Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 750:b96491f7c775
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 22 Jul 2022 16:52:17 +0900 |
parents | c3388f0e9899 |
children | 71ad137dd101 db177d911091 |
files | src/zorn.agda |
diffstat | 1 files changed, 13 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Jul 22 16:08:31 2022 +0900 +++ b/src/zorn.agda Fri Jul 22 16:52:17 2022 +0900 @@ -472,13 +472,13 @@ ... | ch-init fc = ⟪ proj1 ua , ch-init fc ⟫ ... | ch-is-sup u u<x is-sup fc with trio< u px ... | tri< a ¬b ¬c = ⟪ proj1 ua , ch-is-sup u a is-sup fc ⟫ - ... | tri≈ ¬a b ¬c = ? + ... | tri≈ ¬a u=px ¬c = ? --- supf u < a < b , ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → u o< k ) (sym (Oprev.oprev=x op)) u<x ⟫ ) -- = ⟪ proj1 ua , ? ⟫ m04 : odef (UnionCF A f mf ay (ZChain.supf zc) px) b m04 = ZChain1.is-max (prev px px<x) m03 b<px ab (case2 record {x<sup = λ {z} lt → IsSup.x<sup is-sup (chain-mono2 x ( o<→≤ (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc )) o≤-refl lt) } ) a<b - ... | tri≈ ¬a b=px ¬c = ? -- b = px case + ... | tri≈ ¬a b=px ¬c = ? -- b = px case, u = px u<x ... | no lim = record { is-max = is-max ; chain-mono2 = chain-mono2 x ; fcy<sup = fcy<sup ; sup=u = sup=u ; order = order } where fcy<sup : {u w : Ordinal} → u o< x → FClosure A f y w → w << ZChain.supf zc u fcy<sup {u} {w} u<x fc = ZChain1.fcy<sup (prev (osuc u) (ob<x lim u<x)) <-osuc fc @@ -511,7 +511,7 @@ m06 = record { fcy<sup = m07 ; csupz = subst (λ k → FClosure A f k b ) m05 (init ab) ; order = m08 ; y<s = y<s ; supfu=u = sym m05 } m04 : odef (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) b - m04 = ⟪ ab , ch-is-sup ? ? m06 (subst (λ k → FClosure A f k b) m05 (init ab)) ⟫ + m04 = ⟪ ab , ch-is-sup b <-osuc m06 (subst (λ k → FClosure A f k b) m05 (init ab)) ⟫ --- --- the maximum chain has fix point of any ≤-monotonic function @@ -582,7 +582,7 @@ isupf : Ordinal → Ordinal isupf z = y cy : odef (UnionCF A f mf ay isupf o∅) y - cy = ⟪ ay , ch-init ? ⟫ + cy = ⟪ ay , ch-init (init ay) ⟫ isy : {z : Ordinal } → odef (UnionCF A f mf ay isupf o∅) z → * y ≤ * z isy {z} ⟪ az , uz ⟫ with uz ... | ch-init fc = s≤fc y f mf fc @@ -675,8 +675,13 @@ ... | case1 pr = no-extension -- we have previous A ∋ z < x , f z ≡ x, so chain ∋ f z ≡ x because of f-next ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) apx ) ... | case1 is-sup = -- x is a sup of zc - record { supf = {!!} ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal - ; initial = pinit ; chain∋init = pcy ; sup=u = ? ; order = ? } + record { supf = psupf1 ; chain⊆A = ? ; f-next = ? ; f-total = ? + ; initial = ? ; chain∋init = ? ; sup=u = ? ; order = ? } where + psupf1 : Ordinal → Ordinal + psupf1 z with trio< z x + ... | tri< a ¬b ¬c = ZChain.supf zc z + ... | tri≈ ¬a b ¬c = x + ... | tri> ¬a ¬b c = x ... | case2 ¬x=sup = no-extension -- px is not f y' nor sup of former ZChain from y -- no extention ... | no lim = zc5 where @@ -707,13 +712,8 @@ pchain⊆A : {y : Ordinal} → odef pchain y → odef A y pchain⊆A {y} ny = proj1 ny pnext : {a : Ordinal} → odef pchain a → odef pchain (f a) - pnext {a} ⟪ aa , ua ⟫ = ⟪ afa , fua ⟫ where - afa : odef A ( f a ) - afa = proj2 ( mf a aa ) - fua : UChain A f mf ay psupf0 ? (f a) - fua = ? -- with ua - -- ... | ch-init fc = ch-init ( fsuc _ fc ) - --- ... | ch-is-sup u is-sup fc = ch-is-sup u (ChainP-next A f mf ay _ is-sup ) (fsuc _ fc ) + pnext {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf a aa ) , ch-init (fsuc _ fc) ⟫ + pnext {a} ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ = ⟪ proj2 ( mf a aa ) , ch-is-sup u u<x (ChainP-next A f mf ay _ is-sup ) (fsuc _ fc) ⟫ pinit : {y₁ : Ordinal} → odef pchain y₁ → * y ≤ * y₁ pinit {a} ⟪ aa , ua ⟫ with ua ... | ch-init fc = s≤fc y f mf fc