Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1338:b969f1710434
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 16 Jun 2023 11:38:05 +0900 |
parents | 31c9f7fc6466 |
children | 23bba94a980f |
files | src/bijection.agda |
diffstat | 1 files changed, 24 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Fri Jun 16 08:49:25 2023 +0900 +++ b/src/bijection.agda Fri Jun 16 11:38:05 2023 +0900 @@ -671,9 +671,30 @@ -- c1-at-i : (n i : ℕ) → - (suc (c1 n i) ≡ c1 n (suc i) → Is A C (λ i → g (f i)) (g (f (fun← an i))) ) - ∧ (Is A C (λ i → g (f i)) (g (f (fun← an i))) → suc (c1 n i) ≡ c1 n (suc i) ) - c1-at-i = ? + (suc (c1 n i) ≡ c1 n (suc i) → fun→ cn (g (f (fun← an n))) ≡ suc i) + ∧ ( (fun→ cn (g (f (fun← an n))) ≡ suc i) → suc (c1 n i) ≡ c1 n (suc i) ) + c1-at-i 0 i with <-cmp (fun→ cn (g (f (fun← an zero)))) i | <-cmp (fun→ cn (g (f (fun← an zero)))) (suc i) + ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⟪ ( λ () ) , (λ eq → ⊥-elim (nat-≡< eq (<-trans a a<sa))) ⟫ + ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⟪ ( λ () ) , (λ eq → ⊥-elim (nat-≡< eq (<-trans a a<sa))) ⟫ + ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c₁ = ⟪ ( λ () ) , (λ eq → ⊥-elim (nat-≡< eq (<-trans a a<sa))) ⟫ + ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⟪ ( λ () ) , (λ eq → ⊥-elim ( ¬b eq )) ⟫ + ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ⟪ ( λ () ) , (λ eq → ⊥-elim (nat-≡< (sym b) (subst (λ k → i < k) (sym b₁) a<sa) )) ⟫ + ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c₁ = ⟪ ( λ () ) , (λ eq → ⊥-elim ( ¬b eq )) ⟫ + ... | tri> ¬a ¬b c₁ | tri< (s≤s a) ¬b₁ ¬c = ⊥-elim (nat-≡< refl (≤-trans c₁ a)) + ... | tri> ¬a ¬b c₁ | tri≈ ¬a₁ b ¬c = ⟪ ( λ _ → b ) , ( λ _ → refl ) ⟫ + ... | tri> ¬a ¬b c₁ | tri> ¬a₁ ¬b₁ c₂ = ⟪ ( λ () ) , ( λ eq → ⊥-elim (¬b₁ eq )) ⟫ + c1-at-i (suc n) zero with <-cmp (fun→ cn (g (f (fun← an (suc n))))) zero | <-cmp (fun→ cn (g (f (fun← an (suc n))))) (suc zero) + ... | s | t = ? + c1-at-i (suc n) (suc i) with <-cmp (fun→ cn (g (f (fun← an (suc n))))) (suc i) | <-cmp (fun→ cn (g (f (fun← an (suc n))))) (suc (suc i)) + ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⟪ ? , (λ eq → ⊥-elim ( ¬b₁ eq)) ⟫ where + -- a (suc n) is less than (suc i) → c1 (suc n) (suc (suc i)) ≡ c1 (suc n) (suc i) + lemc00 : ¬ ( suc (suc (c1 n (suc i))) ≡ suc (c1 n (suc (suc i))) ) + lemc00 = ? + ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ? + ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c₁ = ? + ... | tri≈ ¬a b ¬c | t = ? + ... | tri> ¬a ¬b c₁ | t = ? + -- -- c n < i means j < suc n → fun← an j < c n, we cannot have more else -- ∃ j → j < suc n → c n < fun← an j