Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1003:b9dfe9bc8412
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Nov 2022 18:14:41 +0900 |
parents | 19ae0591c6dd |
children | 5c62c97adac9 |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 32 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 18 17:58:48 2022 +0900 +++ b/src/zorn.agda Fri Nov 18 18:14:41 2022 +0900 @@ -1080,48 +1080,32 @@ z51 = subst (λ k → FClosure A f k w) (sym (trans (cong supf1 (sym a=px)) (sf1=sf0 (o≤-refl0 a=px) ))) fc z53 : odef A w z53 = A∋fc {A} _ f mf fc - fc1 : FClosure A f (supf1 px) w - fc1 = subst (λ k → FClosure A f k w ) (trans (cong supf0 a=px) (sym (sf1=sf0 o≤-refl )) ) fc csupf1 : odef (UnionCF A f mf ay supf1 b) w csupf1 with trio< (supf0 px) x - ... | tri< sfpx<x ¬b ¬c = csupf2 where - -- supf0 px o< x , supf0 px is member of (UnionCF A f mf ay supf1 x) - csupf2 : odef (UnionCF A f mf ay supf1 b) w - csupf2 with osuc-≡< ((zc-b<x _ sfpx<x) ) - ... | case1 spx=px = ⟪ z53 , ch-is-sup px (subst (λ k → px o< k ) (sym b=x) px<x) cp1 fc1 ⟫ where - -- supf0 px ≡ px - order : {s z1 : Ordinal} → supf1 s o< supf1 px → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 px) ∨ (z1 << supf1 px) - order {s} {z1} ss<spx fcs = subst (λ k → (z1 ≡ k) ∨ (z1 << k )) - (trans (sym (ZChain.supf-is-minsup zc o≤-refl)) (sym (sf1=sf0 o≤-refl)) ) - (MinSUP.x≤sup (ZChain.minsup zc o≤-refl) (ZChain.cfcs zc mf< (supf-inject0 supf1-mono ss<spx) - o≤-refl (fcup fcs (o<→≤ (supf-inject0 supf1-mono ss<spx)) ) )) - cp1 : ChainP A f mf ay supf1 px - cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ (z << k )) (sym (sf1=sf0 o≤-refl)) - ( ZChain.fcy<sup zc o≤-refl fc ) - ; order = order - ; supu=u = trans (sf1=sf0 o≤-refl) spx=px } - ... | case2 spx<px = ⟪ z53 , ch-is-sup spx ? ? ? ⟫ where - spx = supf0 px - z54 : {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) (supf0 px)) z → (z ≡ supf0 px) ∨ (z << supf0 px) - z54 {z} ⟪ az , ch-init fc ⟫ = ZChain.fcy<sup zc o≤-refl fc - z54 {z} ⟪ az , ch-is-sup u u<b is-sup fc ⟫ = subst (λ k → (z ≡ k) ∨ (z << k )) + ... | tri< sfpx<x ¬b ¬c = ⟪ z53 , ch-is-sup spx ? cp1 fc1 ⟫ where + spx = supf0 px + fc1 : FClosure A f (supf1 spx) w + fc1 = subst (λ k → FClosure A f k w ) (trans (cong supf0 a=px) ? ) fc + z54 : {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) (supf0 px)) z → (z ≡ supf0 px) ∨ (z << supf0 px) + z54 {z} ⟪ az , ch-init fc ⟫ = ZChain.fcy<sup zc o≤-refl fc + z54 {z} ⟪ az , ch-is-sup u u<b is-sup fc ⟫ = subst (λ k → (z ≡ k) ∨ (z << k )) (sym (ZChain.supf-is-minsup zc o≤-refl)) (MinSUP.x≤sup (ZChain.minsup zc o≤-refl) (ZChain.cfcs zc mf< u<px o≤-refl fc )) where u<px : u o< px u<px = ZChain.supf-inject zc ( subst (λ k → k o< supf0 px) (sym (ChainP.supu=u is-sup)) u<b ) - -- u<b : u o< supf0 px - -- is-sup : ChainP A f mf ay (ZChain.supf zc) u - -- fc : FClosure A f (ZChain.supf zc u) z - z52 : supf1 (supf0 px) ≡ supf0 px - z52 = trans (sf1=sf0 (zc-b<x _ sfpx<x)) ( ZChain.sup=u zc (ZChain.asupf zc) (zc-b<x _ sfpx<x) + -- u<b : u o< supf0 px + -- is-sup : ChainP A f mf ay (ZChain.supf zc) u + -- fc : FClosure A f (ZChain.supf zc u) z + z52 : supf1 (supf0 px) ≡ supf0 px + z52 = trans (sf1=sf0 (zc-b<x _ sfpx<x)) ( ZChain.sup=u zc (ZChain.asupf zc) (zc-b<x _ sfpx<x) ⟪ record { x≤sup = z54 } , ZChain.IsMinSUP→NotHasPrev zc (ZChain.asupf zc) z54 (( λ ax → proj1 (mf< _ ax))) ⟫ ) - order : {s z1 : Ordinal} → supf1 s o< supf1 spx → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 spx) ∨ (z1 << supf1 spx) - order {s} {z1} ss<spx fcs = subst (λ k → (z1 ≡ k) ∨ (z1 << k )) + order : {s z1 : Ordinal} → supf1 s o< supf1 spx → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 spx) ∨ (z1 << supf1 spx) + order {s} {z1} ss<spx fcs = subst (λ k → (z1 ≡ k) ∨ (z1 << k )) (trans (sym (ZChain.supf-is-minsup zc ? )) (sym ? ) ) (MinSUP.x≤sup (ZChain.minsup zc ?) (ZChain.cfcs zc mf< (supf-inject0 supf1-mono ss<spx) ? (fcup fcs ? ) )) - cp1 : ChainP A f mf ay supf1 spx - cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ (z << k )) (sym (sf1=sf0 ? )) + cp1 : ChainP A f mf ay supf1 spx + cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ (z << k )) (sym (sf1=sf0 ? )) ( ZChain.fcy<sup zc ? fc ) ; order = order ; supu=u = ? }