Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1114:ba3e053b85d4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 01 Jan 2023 15:51:08 +0900 |
parents | 384ba5a3c019 |
children | 97f4a14d88ce |
files | src/Topology.agda |
diffstat | 1 files changed, 18 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Jan 01 13:46:38 2023 +0900 +++ b/src/Topology.agda Sun Jan 01 15:51:08 2023 +0900 @@ -58,9 +58,6 @@ gi : {x : Ordinal } → odef P x → Subbase P x g∩ : {x y : Ordinal } → Subbase P x → Subbase P y → Subbase P (& (* x ∩ * y)) -SI : (P : HOD) → HOD -SI P = record { od = record { def = λ x → Subbase P x } ; odmax = ? ; <odmax = ? } - sbp : (P : HOD) {x : Ordinal } → Subbase P x → Ordinal sbp P {x} (gi {y} px) = x sbp P {.(& (* _ ∩ * _))} (g∩ sb sb₁) = sbp P sb @@ -69,6 +66,22 @@ is-sbp P {x} (gi px) xy = ⟪ px , xy ⟫ is-sbp P {.(& (* _ ∩ * _))} (g∩ {x} {y} px px₁) xy = is-sbp P px (proj1 (subst (λ k → odef k _ ) *iso xy)) +-- OS = { U ⊂ X | ∀ x ∈ U → ∃ b ∈ B → x ∈ b ⊂ U } + +record aBase (P : HOD) {u x : Ordinal} (ux : odef (* u) x) : Set n where + field + b : Ordinal + sb : Subbase P b + b⊆u : * b ⊆ * u + bx : odef (* b) x + +record Base (P : HOD) (u : Ordinal) : Set n where + field + ab : {x : Ordinal } → (ux : odef (* u) x ) → aBase P ux + +SO : (P : HOD) → HOD +SO P = record { od = record { def = λ x → Base P x } ; odmax = ? ; <odmax = ? } + record IsSubBase (L P : HOD) : Set (suc n) where field P⊆PL : P ⊆ Power L @@ -77,16 +90,8 @@ px : {x : HOD} → {lx : L ∋ x } → p lx ∋ x GeneratedTopogy : (L P : HOD) → IsSubBase L P → Topology L -GeneratedTopogy L P isb = record { OS = Union (Power (SI P)) ; OS⊆PL = UPower⊆Q {SI P} {Power L} OS⊆PL0 - ; o∪ = tp01 ; o∩ = UPower∩ tp04 } where - OS⊆PL0 : SI P ⊆ Power L - OS⊆PL0 (gi px) z xz = IsSubBase.P⊆PL isb px _ xz - OS⊆PL0 (g∩ {x} {y} px py) z xz = IsSubBase.P⊆PL isb (proj1 (is-sbp P px (proj1 (subst (λ k → odef k z) *iso xz )) )) _ - (proj2 (is-sbp P px (proj1 (subst (λ k → odef k z) *iso xz )) )) - tp04 : {p q : HOD} → SI P ∋ p → SI P ∋ q → SI P ∋ (p ∩ q) - tp04 {p} {q} pp pq = subst (λ k → odef (SI P) k ) (cong₂ (λ j k → & ( j ∩ k )) *iso *iso ) ( g∩ pp pq ) - tp01 : {q : HOD} → q ⊂ Union (Power (SI P)) → Union (Power (SI P)) ∋ Union q - tp01 {q} ⟪ q<ups , qp ⟫ = record { owner = ? ; ao = ? ; ox = ? } +GeneratedTopogy L P isb = record { OS = SO P ; OS⊆PL = ? + ; o∪ = ? ; o∩ = ? } -- covers