Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 925:babd8ac79a91
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Oct 2022 12:40:09 +0900 |
parents | a48dc906796c |
children | 4b88d9a98d20 |
files | src/zorn.agda |
diffstat | 1 files changed, 14 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Oct 19 09:10:27 2022 +0900 +++ b/src/zorn.agda Wed Oct 19 12:40:09 2022 +0900 @@ -1303,23 +1303,33 @@ data ZChainP ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) ( supf : Ordinal → Ordinal ) (z : Ordinal) : Set n where zchain : (uz : Ordinal ) → odef (UnionCF A f mf ay supf uz) z → ZChainP f mf ay supf z + + auzc : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) + (supf : Ordinal → Ordinal ) → {x : Ordinal } → ZChainP f mf ay supf x → odef A x + auzc f mf {y} ay supf {x} (zchain uz ucf) = proj1 ucf + + zc⊆uzc : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) + (supf : Ordinal → Ordinal ) → {x z ux : Ordinal } → UChain A f mf ay supf ux x → supf x o< supf z → ZChainP f mf ay supf x + zc⊆uzc f mf {y} ay supf {x} ( ch-init fc ) _ = zchain x ⟪ A∋fc y f mf fc , ch-init fc ⟫ + zc⊆uzc f mf {y} ay supf {x} {z} ( ch-is-sup u1 u1<x u1-is-sup fc ) sx<sz + = zchain z ⟪ A∋fc (supf u1) f mf fc , ch-is-sup u1 ? u1-is-sup fc ⟫ UnionZF : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal ) → HOD UnionZF f mf {y} ay supf = record { od = record { def = λ x → ZChainP f mf ay supf x } - ; odmax = & A ; <odmax = λ lt → ∈∧P→o< ? } + ; odmax = & A ; <odmax = λ lt → ∈∧P→o< ⟪ auzc f mf ay supf lt , lift true ⟫ } - uztotal : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) + uzctotal : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) → ( supf : Ordinal → Ordinal ) → IsTotalOrderSet (UnionZF f mf ay supf ) - uztotal f mf ay sz {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where + uzctotal f mf ay sz {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) uz01 = ? usp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {x y : Ordinal} (ay : odef A y) → ( supf : Ordinal → Ordinal ) → SUP A (UnionZF f mf ay supf ) - usp0 f mf {x} ay supf = supP (UnionZF f mf ay supf ) (λ lt → ? ) (uztotal f mf ay supf ) + usp0 f mf {x} ay supf = supP (UnionZF f mf ay supf ) (λ lt → auzc f mf ay supf lt ) (uzctotal f mf ay supf ) sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {x y : Ordinal} (ay : odef A y) → (zc : ZChain A f mf ay x )