Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1465:bd2b003e25ef
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 05 Jan 2024 13:50:21 +0900 |
parents | 484f83b04b5d |
children | e8c166541c86 |
files | src/BAlgebra.agda |
diffstat | 1 files changed, 61 insertions(+), 54 deletions(-) [+] |
line wrap: on
line diff
--- a/src/BAlgebra.agda Wed Jan 03 19:29:23 2024 +0900 +++ b/src/BAlgebra.agda Fri Jan 05 13:50:21 2024 +0900 @@ -30,8 +30,8 @@ -- Ordinal Definable Set -open HODBase.HOD -open HODBase.OD +open HODBase.HOD +open HODBase.OD open _∧_ open _∨_ @@ -39,7 +39,7 @@ open HODBase._==_ -open HODBase.ODAxiom HODAxiom +open HODBase.ODAxiom HODAxiom open OD O HODAxiom open AxiomOfChoice AC @@ -47,7 +47,7 @@ open _∨_ open Bool -L\L=0 : { L : HOD } → (L \ L) =h= od∅ +L\L=0 : { L : HOD } → (L \ L) =h= od∅ L\L=0 {L} = record { eq→ = lem0 ; eq← = lem1 } where lem0 : {x : Ordinal} → odef (L \ L) x → odef od∅ x lem0 {x} ⟪ lx , ¬lx ⟫ = ⊥-elim (¬lx lx) @@ -56,16 +56,16 @@ L\Lx=x : { L x : HOD } → x ⊆ L → (L \ ( L \ x )) =h= x L\Lx=x {L} {x} x⊆L = record { eq→ = lem03 ; eq← = lem04 } where - lem03 : {z : Ordinal} → odef (L \ (L \ x)) z → odef x z + lem03 : {z : Ordinal} → odef (L \ (L \ x)) z → odef x z lem03 {z} ⟪ Lz , Lxz ⟫ with ODC.∋-p O HODAxiom AC x (* z) - ... | yes y = subst (λ k → odef x k ) &iso y + ... | yes y = subst (λ k → odef x k ) &iso y ... | no n = ⊥-elim ( Lxz ⟪ Lz , ( subst (λ k → ¬ odef x k ) &iso n ) ⟫ ) - lem04 : {z : Ordinal} → odef x z → odef (L \ (L \ x)) z + lem04 : {z : Ordinal} → odef x z → odef (L \ (L \ x)) z lem04 {z} xz with ODC.∋-p O HODAxiom AC L (* z) ... | yes y = ⟪ subst (λ k → odef L k ) &iso y , ( λ p → proj2 p xz ) ⟫ ... | no n = ⊥-elim ( n (subst (λ k → odef L k ) (sym &iso) ( x⊆L xz) )) - -L\0=L : { L : HOD } → (L \ od∅) =h= L + +L\0=L : { L : HOD } → (L \ od∅) =h= L L\0=L {L} = record { eq→ = lem05 ; eq← = lem06 } where lem05 : {x : Ordinal} → odef (L \ od∅) x → odef L x lem05 {x} ⟪ Lx , _ ⟫ = Lx @@ -77,7 +77,7 @@ ... | yes y = case1 ( subst (λ k → odef X k ) &iso y ) ... | no n = case2 ⟪ Lx , subst (λ k → ¬ odef X k) &iso n ⟫ -\-⊆ : { P A B : HOD } → A ⊆ P → ( A ⊆ B → ( P \ B ) ⊆ ( P \ A )) ∧ (( P \ B ) ⊆ ( P \ A ) → A ⊆ B ) +\-⊆ : { P A B : HOD } → A ⊆ P → ( A ⊆ B → ( P \ B ) ⊆ ( P \ A )) ∧ (( P \ B ) ⊆ ( P \ A ) → A ⊆ B ) \-⊆ {P} {A} {B} A⊆P = ⟪ ( λ a<b {x} pbx → ⟪ proj1 pbx , (λ ax → proj2 pbx (a<b ax)) ⟫ ) , lem07 ⟫ where lem07 : (P \ B) ⊆ (P \ A) → A ⊆ B lem07 pba {x} ax with ODC.p∨¬p O HODAxiom AC (odef B x) @@ -89,7 +89,7 @@ lemm : {x : HOD} → (L \ x) ⊆ Power (Union L ) lemm {x} ⟪ Ly , nxy ⟫ z xz = record { owner = _ ; ao = Ly ; ox = xz } wdf : {x y : HOD} → od x == od y → (L \ x) =h= (L \ y) - wdf {x} {y} x=y = record { eq→ = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq← x=y yp) ) ⟫ + wdf {x} {y} x=y = record { eq→ = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq← x=y yp) ) ⟫ ; eq← = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq→ x=y yp) ) ⟫ } @@ -105,36 +105,43 @@ ... | no n = ⊥-elim ( not x ⟪ fx , subst (λ k → ¬ odef U k ) &iso n ⟫ ) ∪-Union : { A B : HOD } → Union (A , B) =h= ( A ∪ B ) -∪-Union {A} {B} = ( record { eq→ = lemma1 ; eq← = lemma2 } ) where - lemma1 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x - lemma1 {x} record { owner = owner ; ao = abo ; ox = ox } with pair=∨ (subst₂ (λ j k → odef (j , k ) owner) ? (sym ?) abo ) - ... | case1 a=o = case1 (subst (λ k → odef k x ) ( begin - * owner ≡⟨ cong (*) (sym a=o) ⟩ - * (& A) ≡⟨ ? ⟩ - A ∎ ) ox ) where open ≡-Reasoning - ... | case2 b=o = case2 (subst (λ k → odef k x ) (trans (cong (*) (sym b=o)) ? ) ox) +∪-Union {A} {B} = ( record { eq→ = lemma4 ; eq← = lemma2 } ) where + lemma4 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x + lemma4 {x} record { owner = owner ; ao = (case1 refl) ; ox = ox } = case1 (eq← *iso== ox) + lemma4 {x} record { owner = owner ; ao = (case2 refl) ; ox = ox } = case2 (eq← *iso== ox) lemma2 : {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( union→ (A , B) (* x) A ⟪ case1 refl , d→∋ A A∋x ⟫ ) lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( union→ (A , B) (* x) B ⟪ case2 refl , d→∋ B B∋x ⟫ ) -∩-Select : { A B : HOD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x )) ? =h= ( A ∩ B ) +open import zf + +pred-in : (A B : HOD ) → ZPred HOD _∋_ _=h=_ (λ x → (A ∋ x) ∧ (B ∋ x)) +pred-in A B = record { ψ-cong = wdf } where + wdf : (x y : HOD) → x =h= y → ((A ∋ x) ∧ (B ∋ x)) ⇔ ((A ∋ y) ∧ (B ∋ y)) + wdf = λ x y x=y + → ⟪ (λ p → ⟪ subst (λ k → odef A k) (==→o≡ x=y) (proj1 p) + , subst (λ k → odef B k) (==→o≡ x=y) (proj2 p) ⟫ ) + , (λ p → ⟪ subst (λ k → odef A k) (sym (==→o≡ x=y)) (proj1 p) + , subst (λ k → odef B k) (sym (==→o≡ x=y)) (proj2 p) ⟫ ) ⟫ + +∩-Select : { A B : HOD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x )) (pred-in A B) =h= ( A ∩ B ) ∩-Select {A} {B} = record { eq→ = lemma1 ; eq← = lemma2 } where - lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁)) ? ) x → odef (A ∩ B) x + lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁)) (pred-in A B) ) x → odef (A ∩ B) x lemma1 {x} lt = ⟪ proj1 lt , subst (λ k → odef B k ) &iso (proj2 (proj2 lt)) ⟫ - lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁)) ? ) x + lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁)) (pred-in A B) ) x lemma2 {x} lt = ⟪ proj1 lt , ⟪ d→∋ A (proj1 lt) , d→∋ B (proj2 lt) ⟫ ⟫ dist-ord : {p q r : HOD } → (p ∩ ( q ∪ r )) =h= ( ( p ∩ q ) ∪ ( p ∩ r )) dist-ord {p} {q} {r} = record { eq→ = lemma1 ; eq← = lemma2 } where lemma1 : {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x lemma1 {x} lt with proj2 lt - lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫ - lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫ + lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫ + lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫ lemma2 : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x - lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫ - lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫ + lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫ + lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫ dist-ord2 : {p q r : HOD } → (p ∪ ( q ∩ r )) =h= ( ( p ∪ q ) ∩ ( p ∪ r )) dist-ord2 {p} {q} {r} = record { eq→ = lemma1 ; eq← = lemma2 } where @@ -144,63 +151,63 @@ lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x lemma2 {x} lt with proj1 lt | proj2 lt lemma2 {x} lt | case1 cp | _ = case1 cp - lemma2 {x} lt | _ | case1 cp = case1 cp - lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫ + lemma2 {x} lt | _ | case1 cp = case1 cp + lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫ record IsBooleanAlgebra {n m : Level} ( L : Set n) - ( _==_ : L → L → Set m ) + ( _≈_ : L → L → Set m ) ( b1 : L ) ( b0 : L ) ( -_ : L → L ) ( _+_ : L → L → L ) ( _x_ : L → L → L ) : Set (n ⊔ m) where field - +-assoc : {a b c : L } → (a + ( b + c )) == ((a + b) + c) - x-assoc : {a b c : L } → (a x ( b x c )) == ((a x b) x c) - +-sym : {a b : L } → (a + b) == (b + a) - x-sym : {a b : L } → (a x b) == (b x a) - +-aab : {a b : L } → (a + ( a x b )) == a - x-aab : {a b : L } → (a x ( a + b )) == a - +-dist : {a b c : L } → (a + ( b x c )) == (( a + b ) x ( a + c )) - x-dist : {a b c : L } → (a x ( b + c )) == (( a x b ) + ( a x c )) - a+0 : {a : L } → (a + b0) == a - ax1 : {a : L } → (a x b1) == a - a+-a1 : {a : L } → (a + ( - a )) == b1 - ax-a0 : {a : L } → (a x ( - a )) == b0 + +-assoc : {a b c : L } → (a + ( b + c )) ≈ ((a + b) + c) + x-assoc : {a b c : L } → (a x ( b x c )) ≈ ((a x b) x c) + +-sym : {a b : L } → (a + b) ≈ (b + a) + x-sym : {a b : L } → (a x b) ≈ (b x a) + +-aab : {a b : L } → (a + ( a x b )) ≈ a + x-aab : {a b : L } → (a x ( a + b )) ≈ a + +-dist : {a b c : L } → (a + ( b x c )) ≈ (( a + b ) x ( a + c )) + x-dist : {a b c : L } → (a x ( b + c )) ≈ (( a x b ) + ( a x c )) + a+0 : {a : L } → (a + b0) ≈ a + ax1 : {a : L } → (a x b1) ≈ a + a+-a1 : {a : L } → (a + ( - a )) ≈ b1 + ax-a0 : {a : L } → (a x ( - a )) ≈ b0 record BooleanAlgebra {n m : Level} ( L : Set n) : Set (n ⊔ suc m) where field - _=b=_ : L → L → Set m + _≈_ : L → L → Set m b1 : L b0 : L - -_ : L → L + -_ : L → L _+_ : L → L → L _x_ : L → L → L - isBooleanAlgebra : IsBooleanAlgebra L _=b=_ b1 b0 -_ _+_ _x_ + isBooleanAlgebra : IsBooleanAlgebra L _≈_ b1 b0 -_ _+_ _x_ record PowerP (P : HOD) : Set (suc n) where constructor ⟦_,_⟧ field hod : HOD - x⊆P : hod ⊆ P + x⊆P : hod ⊆ P open PowerP HODBA : (P : HOD) → BooleanAlgebra {suc n} {n} (PowerP P) -HODBA P = record { _=b=_ = λ x y → hod x =h= hod y ; b1 = ⟦ P , (λ x → x) ⟧ ; b0 = ⟦ od∅ , (λ x → ⊥-elim (¬x<0 x)) ⟧ +HODBA P = record { _≈_ = λ x y → hod x =h= hod y ; b1 = ⟦ P , (λ x → x) ⟧ ; b0 = ⟦ od∅ , (λ x → ⊥-elim (¬x<0 x)) ⟧ ; -_ = λ x → ⟦ P \ hod x , proj1 ⟧ - ; _+_ = λ x y → ⟦ hod x ∪ hod y , ba00 x y ⟧ ; _x_ = λ x y → ⟦ hod x ∩ hod y , (λ lt → x⊆P x (proj1 lt)) ⟧ + ; _+_ = λ x y → ⟦ hod x ∪ hod y , ba00 x y ⟧ ; _x_ = λ x y → ⟦ hod x ∩ hod y , (λ lt → x⊆P x (proj1 lt)) ⟧ ; isBooleanAlgebra = record { +-assoc = λ {a} {b} {c} → record { eq→ = ba01 a b c ; eq← = ba02 a b c } - ; x-assoc = λ {a} {b} {c} → - record { eq→ = λ lt → ⟪ ⟪ proj1 lt , proj1 (proj2 lt) ⟫ , proj2 (proj2 lt) ⟫ - ; eq← = λ lt → ⟪ proj1 (proj1 lt) , ⟪ proj2 (proj1 lt) , proj2 lt ⟫ ⟫ } + ; x-assoc = λ {a} {b} {c} → + record { eq→ = λ lt → ⟪ ⟪ proj1 lt , proj1 (proj2 lt) ⟫ , proj2 (proj2 lt) ⟫ + ; eq← = λ lt → ⟪ proj1 (proj1 lt) , ⟪ proj2 (proj1 lt) , proj2 lt ⟫ ⟫ } ; +-sym = λ {a} {b} → record { eq→ = λ {x} lt → ba05 {hod a} {hod b} lt ; eq← = ba05 {hod b} {hod a} } ; x-sym = λ {a} {b} → record { eq→ = λ lt → ⟪ proj2 lt , proj1 lt ⟫ ; eq← = λ lt → ⟪ proj2 lt , proj1 lt ⟫ } ; +-aab = λ {a} {b} → record { eq→ = ba03 a b ; eq← = case1 } ; x-aab = λ {a} {b} → record { eq→ = proj1 ; eq← = λ ax → ⟪ ax , case1 ax ⟫ } - ; +-dist = λ {p} {q} {r} → dist-ord2 {hod p} {hod q} {hod r} - ; x-dist = λ {p} {q} {r} → dist-ord {hod p} {hod q} {hod r} + ; +-dist = λ {p} {q} {r} → dist-ord2 {hod p} {hod q} {hod r} + ; x-dist = λ {p} {q} {r} → dist-ord {hod p} {hod q} {hod r} ; a+0 = λ {a} → record { eq→ = ba04 (hod a) ; eq← = case1 } ; ax1 = λ {a} → record { eq→ = proj1 ; eq← = λ ax → ⟪ ax , x⊆P a ax ⟫ } ; a+-a1 = λ {a} → record { eq→ = ba06 a ; eq← = ba07 a } @@ -215,7 +222,7 @@ ba01 a b c {x} (case2 (case1 bx)) = case1 (case2 bx) ba01 a b c {x} (case2 (case2 cx)) = case2 cx ba02 : (a b c : PowerP P) → {x : Ordinal} → odef (hod a ∪ hod b) x ∨ odef (hod c) x - → odef (hod a) x ∨ odef (hod b ∪ hod c) x + → odef (hod a) x ∨ odef (hod b ∪ hod c) x ba02 a b c {x} (case1 (case1 ax)) = case1 ax ba02 a b c {x} (case1 (case2 bx)) = case2 (case1 bx) ba02 a b c {x} (case2 cx) = case2 (case2 cx) @@ -232,7 +239,7 @@ ba06 : (a : PowerP P ) → { x : Ordinal} → odef (hod a) x ∨ odef (P \ hod a) x → def (od P) x ba06 a {x} (case1 ax) = x⊆P a ax ba06 a {x} (case2 nax) = proj1 nax - ba07 : (a : PowerP P ) → { x : Ordinal} → def (od P) x → odef (hod a) x ∨ odef (P \ hod a) x + ba07 : (a : PowerP P ) → { x : Ordinal} → def (od P) x → odef (hod a) x ∨ odef (P \ hod a) x ba07 a {x} px with ODC.∋-p O HODAxiom AC (hod a) (* x) ... | yes y = case1 (subst (λ k → odef (hod a) k) &iso y) ... | no n = case2 ⟪ px , subst (λ k → ¬ odef (hod a) k) &iso n ⟫