Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1276:c077532416d9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Apr 2023 09:00:53 +0900 |
parents | e7743ac5a070 |
children | 53a4bd63016a |
files | src/ZProduct.agda |
diffstat | 1 files changed, 25 insertions(+), 32 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ZProduct.agda Wed Apr 05 08:09:49 2023 +0900 +++ b/src/ZProduct.agda Wed Apr 05 09:00:53 2023 +0900 @@ -162,11 +162,11 @@ zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → ZFProduct A B k ) (sym x=ψb) (ab-pair ab ba) -ZFPproj1 : {A B X : HOD} → X ⊆ ZFP A B → HOD -ZFPproj1 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ1 (X⊆P px) )) +ZPI1 : (A B : HOD) → HOD +ZPI1 A B = Replace' (ZFP A B) ( λ x px → * (zπ1 px )) -ZFPproj2 : {A B X : HOD} → X ⊆ ZFP A B → HOD -ZFPproj2 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ2 (X⊆P px) )) +ZPI2 : (A B : HOD) → HOD +ZPI2 A B = Replace' (ZFP A B) ( λ x px → * (zπ2 px )) ZFProj1-iso : {P Q : HOD} {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a ZFProj1-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) @@ -212,17 +212,17 @@ iB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( i→ x lt ) iiso : (x y : Ordinal ) → ( ltx : odef (* A) x ) ( lty : odef (* A) y ) → i→ x ltx ≡ i→ y lty → x ≡ y -record OrdBijection (A B : Ordinal ) : Set n where +record HODBijection (A B : HOD ) : Set n where field - fun← : (x : Ordinal ) → odef (* A) x → Ordinal - fun→ : (x : Ordinal ) → odef (* B) x → Ordinal - funB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( fun← x lt ) - funA : (x : Ordinal ) → ( lt : odef (* B) x ) → odef (* A) ( fun→ x lt ) - fiso← : (x : Ordinal ) → ( lt : odef (* B) x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x - fiso→ : (x : Ordinal ) → ( lt : odef (* A) x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x + fun← : (x : Ordinal ) → odef A x → Ordinal + fun→ : (x : Ordinal ) → odef B x → Ordinal + funB : (x : Ordinal ) → ( lt : odef A x ) → odef B ( fun← x lt ) + funA : (x : Ordinal ) → ( lt : odef B x ) → odef A ( fun→ x lt ) + fiso← : (x : Ordinal ) → ( lt : odef B x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x + fiso→ : (x : Ordinal ) → ( lt : odef A x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x -ordbij-refl : { a b : Ordinal } → a ≡ b → OrdBijection a b -ordbij-refl {a} refl = record { +hodbij-refl : { a b : HOD } → a ≡ b → HODBijection a b +hodbij-refl {a} refl = record { fun← = λ x _ → x ; fun→ = λ x _ → x ; funB = λ x lt → lt @@ -231,28 +231,21 @@ ; fiso→ = λ x lt → refl } -ZFPsym : (A B : HOD) → OrdBijection (& (ZFP A B)) (& (ZFP B A)) +ZFPsym : (A B : HOD) → HODBijection (ZFP A B) (ZFP (ZPI2 A B) (ZPI1 A B)) ZFPsym A B = record { - fun← = λ xy ab → getord ( exchg {A} {B} {zπ1 (subst (λ k → odef k xy) *iso ab)} {zπ2 (subst (λ k → odef k xy) *iso ab)} {_} refl (subst₂ (λ j k → odef j k) *iso (sym (zp-iso (subst (λ k → odef k xy) *iso ab))) ab )) - ; fun→ = λ xy ba → getord ( exchg {B} {A} {zπ1 (subst (λ k → odef k xy) *iso ba)} {zπ2 (subst (λ k → odef k xy) *iso ba)} {_} refl (subst₂ (λ j k → odef j k) *iso (sym (zp-iso (subst (λ k → odef k xy) *iso ba))) ba )) - ; funB = λ xy ab → subst₂ (λ j k → odef j k ) (sym *iso) refl - (exchg (sym (zp-iso (subst (λ k → odef k xy) *iso ab))) (subst (λ k → odef k xy) *iso ab)) - ; funA = λ xy ab → subst₂ (λ j k → odef j k ) (sym *iso) refl - (exchg (sym (zp-iso (subst (λ k → odef k xy) *iso ab))) (subst (λ k → odef k xy) *iso ab)) - ; fiso← = λ xy ab → trans (cong getord ( HE.≅-to-≡ (exchg² refl (ab-pair ? ? ))) ) (trans ? (is-prod (subst (λ k → odef k xy) *iso ab)) ) + fun← = λ xy ab → & < * ( zπ2 ab) , * ( zπ1 ab) > + ; fun→ = λ xy ab → & < * ( zπ2 ab) , * ( zπ1 ab) > + ; funB = pj2 + ; funA = ? + ; fiso← = λ xy ab → ? ; fiso→ = λ xy ab → ? } where - getord : {A B : HOD} {xy : Ordinal} → odef (ZFP A B) xy → Ordinal - getord {A} {B} {xy} ab = xy - is-prod : {A B : HOD} {xy : Ordinal} → (ab : odef (ZFP A B) xy) → getord ab ≡ xy - is-prod {A} {B} {xy} ab = refl - exchg : {A B : HOD} {x y xy : Ordinal} → xy ≡ & < * x , * y > → odef (ZFP A B) xy → odef (ZFP B A) (& < * y , * x >) - exchg {A} {B} {x} {y} eq (ab-pair {a} {b} ax by ) = subst (λ k → odef (ZFP B A) k) - (cong₂ (λ j k → & < j , k >) (proj2 (prod-≡ lemma2 )) (proj1 (prod-≡ lemma2 )) ) (ab-pair by ax) where - lemma2 : < * a , * b > ≡ < * x , * y > - lemma2 = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) eq) - exchg² : {A B : HOD} {x y xy : Ordinal} → (eq : xy ≡ & < * x , * y >) → (ab : odef (ZFP A B) xy) → exchg refl ( exchg eq ab ) ≅ ab - exchg² {A} {B} eq (ab-pair ax by ) = ? + pj02 : (x : Ordinal) → (ab : odef (ZFP A B) x ) → odef (ZPI2 A B) (zπ2 ab) + pj02 x ab = record { z = _ ; az = ab ; x=ψz = ? } + pj2 : (x : Ordinal) (lt : odef (ZFP A B) x) → odef (ZFP (ZPI2 A B) (ZPI1 A B)) (& < * (zπ2 lt) , * (zπ1 lt) >) + pj2 x ab = ab-pair (pj02 x ab) ? + pj1 : (x : Ordinal) (lt : odef (ZFP (ZPI2 A B) (ZPI1 A B)) x) → odef (ZFP A B) (& < * (zπ2 lt) , * (zπ1 lt) >) + pj1 _ (ab-pair {x} {y} record { z = z ; az = bz ; x=ψz = x=ψbz } ay) = ab-pair ? ? ZFP∩ : {A B C : HOD} → ( ZFP (A ∩ B) C ≡ ZFP A C ∩ ZFP B C ) ∧ ( ZFP C (A ∩ B) ≡ ZFP C A ∩ ZFP C B )