Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 79:c07c548b2ac1
add some lemma
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 03 Jun 2019 10:50:03 +0900 |
parents | 9a7a64b2388c |
children | 461690d60d07 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 7 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Mon Jun 03 10:19:52 2019 +0900 +++ b/ordinal-definable.agda Mon Jun 03 10:50:03 2019 +0900 @@ -183,6 +183,12 @@ ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) ... | () +==→o≡ : {n : Level} → { x y : Ordinal {suc n} } → ord→od x == ord→od y → x ≡ y +==→o≡ {n} {x} {y} eq with trio< {n} x y +==→o≡ {n} {x} {y} eq | tri< a ¬b ¬c = ⊥-elim ( o<→o> eq (o<-subst a (sym ord-iso) (sym ord-iso ))) +==→o≡ {n} {x} {y} eq | tri≈ ¬a b ¬c = b +==→o≡ {n} {x} {y} eq | tri> ¬a ¬b c = ⊥-elim ( o<→o> (eq-sym eq) (o<-subst c (sym ord-iso) (sym ord-iso ))) + o<→¬== : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (x == y ) o<→¬== {n} {x} {y} lt eq = o<→o> eq lt @@ -237,7 +243,7 @@ lemma o∅ ne | yes refl | () lemma ox ne | no ¬p = subst ( λ k → def (ord→od ox) (od→ord k) ) o∅→od∅ (o<→c< (∅5 ¬p)) -open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record {