changeset 1226:c8f5376a9623

proj2 filter F done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 07 Mar 2023 18:58:23 +0900
parents 5c4a088ae95b
children 72b5815be243
files src/Tychonoff.agda
diffstat 1 files changed, 28 insertions(+), 26 deletions(-) [+]
line wrap: on
line diff
--- a/src/Tychonoff.agda	Tue Mar 07 18:24:42 2023 +0900
+++ b/src/Tychonoff.agda	Tue Mar 07 18:58:23 2023 +0900
@@ -484,7 +484,8 @@
                ty62 = subst (λ k → odef (filter F) k ) (trans (sym &iso) (cong (&) (¬x∋y→x≡od∅ ty63)) ) az
             ty60 : {p : HOD} → Power P ∋ p → Power P ∋ (P \ p) → (FPSet ∋ p) ∨ (FPSet ∋ (P \ p))
             ty60 {p} Pp Pnp with ultra-filter.ultra UF {ZFP p Q} 
-                (λ z xz → isP→PxQ (λ {x} lt → Pp _ (subst (λ k → odef k x) (sym *iso) lt)) (subst (λ k → odef k z) *iso xz)) ?
+                (λ z xz → isP→PxQ (λ {x} lt → Pp _ (subst (λ k → odef k x) (sym *iso) lt)) (subst (λ k → odef k z) *iso xz)) 
+                (λ z xz → proj1 (subst (λ k → odef k z) *iso xz ))
             ... | case1 fp  = case1 (FPSet∋zpq (λ {z} xz → Pp z (subst (λ k → odef k z) (sym *iso) xz )) fp )
             ... | case2 fnp = case2 (FPSet∋zpq (λ pp → proj1 pp)  (subst (λ k → odef (filter F) k) (cong (&) (proj1 ZFP\Q)) fnp ))
          uflp : UFLP TP FP UFP
@@ -514,7 +515,7 @@
                  b=x : b  ≡ x 
                  b=x = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (sym ty24))
              ty22 : {x : Ordinal} → odef q x → odef (fx→qx fq) x 
-             ty22 {x} qx = record { z = _ ; az = ab-pair ? ? ; x=ψz = subst₂ (λ j k → j ≡ k) &iso refl (cong (&) ty12 ) }  where
+             ty22 {x} qx = record { z = _ ; az = ab-pair qq qx ; x=ψz = subst₂ (λ j k → j ≡ k) &iso refl (cong (&) ty12 ) }  where
                  ty12 : * x ≡ * (zπ2 (F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair qq qx ))))
                  ty12 = begin
                     * x ≡⟨ sym (cong (*) (ty32 qx qq )) ⟩
@@ -538,7 +539,7 @@
                   Replace' (* (& (ZFP P q))) (λ y xy → * (zπ2 (F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy)  ))) 
                      ≡⟨ Replace'-iso _  ( λ y xy → * (zπ2 (F⊆pxq fq xy) )) ⟩
                   Replace' (ZFP P q ) ( λ y xy → * (zπ2 (F⊆pxq fq xy) )) ≡⟨ refl ⟩ 
-                  fx→qx fq ≡⟨ fx→qx1 ? fq  ⟩
+                  fx→qx fq ≡⟨ fx→qx1 ap fq  ⟩
                   q ∎ where open ≡-Reasoning
          FQSet⊆PP :  FQSet  ⊆ Power Q
          FQSet⊆PP {x} record { z = z ; az = fz ; x=ψz = x=ψz } w xw with subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso) xw
@@ -567,23 +568,23 @@
                  ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 p ≡ b
                  ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq))
                  ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d)
-         q⊆Q : {x : Ordinal} {p : HOD} (fx : odef (filter F) x) → X=F2 x p fx → p ⊆ P
+         q⊆Q : {x : Ordinal} {p : HOD} (fx : odef (filter F) x) → X=F2 x p fx → p ⊆ Q
          q⊆Q {x} {p} fx x=ψz {w} pw with subst (λ k → odef k w) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψz))  pw
-         ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k) (sym (trans x=ψz1 &iso)) 
-               ? -- (zp2 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) (subst (λ k → odef (* x) k) (sym &iso) az1 ))  )
+         ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef Q k) (sym (trans x=ψz1 &iso)) 
+               (zp2 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) (subst (λ k → odef (* x) k) (sym &iso) az1 ))  )
          FQ : Filter {Power Q} {Q} (λ x → x)
          FQ = record { filter = FQSet ; f⊆L = FQSet⊆PP ; filter1 = ty01 ; filter2 = ty02 } where
              ty01 : {p q : HOD} → Power Q ∋ q → FQSet ∋ p → p ⊆ q → FQSet ∋ q
-             ty01 {p} {q} Pq record { z = x ; az = fx ; x=ψz = x=ψz } p⊆q = FQSet∋zpq ? ? -- q⊆P (ty10 ty05 ty06 ) 
+             ty01 {p} {q} Pq record { z = x ; az = fx ; x=ψz = x=ψz } p⊆q = FQSet∋zpq q⊆P (ty10 ty05 ty06 ) 
                 where
-                  --  p ≡ (Replace' (* x) (λ y xy → (zπ1 (F⊆qxq (subst (odef (filter F)) (sym &iso) fx) xy))
-                  --  x = ( qx , qx )  , qx ⊆ q
+                  --  p ≡ (Replace' (* x) (λ y xy → (zπ2 (F⊆qxq (subst (odef (filter F)) (sym &iso) fx) xy))
+                  --  x = ( px , qx )  , qx ⊆ q
                   ty03 : Power (ZFP P Q) ∋ ZFP P q 
-                  ty03 z zpq = isQ→PxQ {* (& q)} ? ? --  ( subst (λ k → odef k z ) (trans *iso (cong (λ k → ZFP P k ) (sym *iso))) zpq ) (Pq _)
+                  ty03 z zpq = isQ→PxQ {* (& q)} (Pq _) ( subst (λ k → odef k z ) (trans *iso (cong (λ k → ZFP P k ) (sym *iso))) zpq ) 
                   q⊆P : q ⊆ Q
                   q⊆P {w} qw = Pq _ (subst (λ k → odef k w ) (sym *iso) qw )
                   ty05 : filter F ∋  ZFP P p
-                  ty05 = filter1 F (λ z wz → isQ→PxQ ? ? ) (subst (λ k → odef (filter F) k) (sym &iso) fx) (x⊆qxq fx x=ψz)
+                  ty05 = filter1 F (λ z wz → isQ→PxQ (q⊆Q fx x=ψz) (subst (λ k → odef k z) *iso wz)) (subst (λ k → odef (filter F) k) (sym &iso) fx) (x⊆qxq fx x=ψz)
                   ty06 : ZFP P p ⊆ ZFP P q 
                   ty06 (ab-pair wp wq ) = ab-pair wp (p⊆q wq) 
                   ty10 : filter F ∋ ZFP P p → ZFP P p ⊆ ZFP P q → filter F ∋  ZFP P q 
@@ -591,27 +592,27 @@
              ty02 : {p q : HOD} → FQSet ∋ p → FQSet ∋ q → Power Q ∋ (p ∩ q) → FQSet ∋ (p ∩ q)
              ty02 {p} {q} record { z = zp ; az = fzp ; x=ψz = x=ψzp }
                           record { z = zq ; az = fzq ; x=ψz = x=ψzq } Ppq 
-                = FQSet∋zpq ? ? where -- (λ {z} xz → Ppq z (subst (λ k → odef k z) (sym *iso) xz )) ty50 where
-                  ty54 : Power (ZFP P Q) ∋ (ZFP P q ∩ ZFP P q )
+                = FQSet∋zpq (λ {z} xz → Ppq z (subst (λ k → odef k z) (sym *iso) xz )) ty50 where
+                  ty54 : Power (ZFP P Q) ∋ (ZFP P p ∩ ZFP P q )
                   ty54 z xz = subst (λ k → ZFProduct P Q k ) (zp-iso pqz) (ab-pair pqz1 pqz2 ) where
                      pqz :  odef (ZFP P (p ∩ q) )  z
-                     pqz = ? -- subst (λ k → odef k z ) (trans *iso (sym (proj2 ZFP∩) ))  xz
+                     pqz = subst (λ k → odef k z ) (trans *iso (sym (proj2 ZFP∩) ))  xz
                      pqz1 : odef P (zπ1 pqz)
                      pqz1 = zp1 pqz
                      pqz2 : odef Q (zπ2 pqz)
-                     pqz2 = ? -- q⊆Q fzp x=ψzp (proj2 (zp2 pqz))
-                  ty53 : filter F ∋ ZFP P q 
-                  ty53 = ? -- filter1 F (λ z wz → isQ→PxQ ? -- (q⊆Q fzp x=ψzp) 
-                     -- (subst (λ k → odef k z) *iso wz)) 
-                     -- (subst (λ k → odef (filter F) k) (sym &iso) fzp ) (x⊆qxq fzp x=ψzp)
+                     pqz2 = q⊆Q fzp x=ψzp (proj1 (zp2 pqz))
+                  ty53 : filter F ∋ ZFP P p 
+                  ty53 = filter1 F (λ z wz → isQ→PxQ (q⊆Q fzp x=ψzp) 
+                     (subst (λ k → odef k z) *iso wz)) 
+                     (subst (λ k → odef (filter F) k) (sym &iso) fzp ) (x⊆qxq fzp x=ψzp)
                   ty52 : filter F ∋ ZFP P q  
-                  ty52 = ? -- filter1 F (λ z wz → isQ→PxQ (q⊆Q fzq x=ψzq) 
-                     -- (subst (λ k → odef k z) *iso wz)) 
-                     -- (subst (λ k → odef (filter F) k) (sym &iso) fzq ) (x⊆qxq fzq x=ψzq)
-                  ty51 : filter F ∋ ( ZFP P q ∩ ZFP q Q )
-                  ty51 = ? -- filter2 F ty53 ty52 ty54
+                  ty52 = filter1 F (λ z wz → isQ→PxQ (q⊆Q fzq x=ψzq) 
+                     (subst (λ k → odef k z) *iso wz)) 
+                     (subst (λ k → odef (filter F) k) (sym &iso) fzq ) (x⊆qxq fzq x=ψzq)
+                  ty51 : filter F ∋ ( ZFP P p ∩ ZFP P q )
+                  ty51 = filter2 F ty53 ty52 ty54
                   ty50 : filter F ∋ ZFP P (p ∩ q) 
-                  ty50 = ? -- subst (λ k → filter F ∋ k ) (sym (proj1 ZFP∩)) ty51
+                  ty50 = subst (λ k → filter F ∋ k ) (sym (proj2 ZFP∩)) ty51
          UFQ : ultra-filter FQ
          UFQ = record { proper = ty61 ; ultra = ty60 } where
             ty61 : ¬ (FQSet ∋ od∅)
@@ -623,7 +624,8 @@
                ty62 = subst (λ k → odef (filter F) k ) (trans (sym &iso) (cong (&) (¬x∋y→x≡od∅ ty63)) ) az
             ty60 : {p : HOD} → Power Q ∋ p → Power Q ∋ (Q \ p) → (FQSet ∋ p) ∨ (FQSet ∋ (Q \ p))
             ty60 {q} Pp Pnp with ultra-filter.ultra UF {ZFP P q} 
-                (λ z xz → isQ→PxQ (λ {x} lt → Pp _ (subst (λ k → odef k x) (sym *iso) lt)) (subst (λ k → odef k z) *iso xz)) ?
+                (λ z xz → isQ→PxQ (λ {x} lt → Pp _ (subst (λ k → odef k x) (sym *iso) lt)) (subst (λ k → odef k z) *iso xz)) 
+                (λ z xz → proj1 (subst (λ k → odef k z) *iso xz ))
             ... | case1 fq  = case1 (FQSet∋zpq (λ {z} xz → Pp z (subst (λ k → odef k z) (sym *iso) xz )) fq )
             ... | case2 fnp = case2 (FQSet∋zpq (λ pp → proj1 pp)  (subst (λ k → odef (filter F) k) (cong (&) (proj2 ZFP\Q)) fnp ))