Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 389:cb183674facf
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 Jul 2020 13:12:29 +0900 |
parents | 19687f3304c9 |
children | d58edc4133b0 |
files | generic-filter.agda |
diffstat | 1 files changed, 17 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/generic-filter.agda Sat Jul 25 12:54:28 2020 +0900 +++ b/generic-filter.agda Sat Jul 25 13:12:29 2020 +0900 @@ -173,14 +173,14 @@ open CountableOrdinal open CountableHOD -PGHOD : (P : CountableHOD ) (i : Nat) → (C : CountableOrdinal) → (p : Ordinal) → HOD -PGHOD P i C p = record { od = record { def = λ x → odef (ord→od (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (ord→od p) y → odef (ord→od x) y ) } +PGHOD : (i : Nat) → (C : CountableOrdinal) → (p : Ordinal) → HOD +PGHOD i C p = record { od = record { def = λ x → odef (ord→od (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (ord→od p) y → odef (ord→od x) y ) } ; odmax = ctl→ C i ; <odmax = λ {y} lt → odefo→o< (proj1 lt)} next-p : (P : CountableHOD ) (i : Nat) → (C : CountableOrdinal) → (p : Ordinal) → Ordinal -next-p P i C p with ODC.decp O ( PGHOD P i C p =h= od∅ ) +next-p P i C p with ODC.decp O ( PGHOD i C p =h= od∅ ) next-p P i C p | yes y = p -next-p P i C p | no not = od→ord (ODC.minimal O (PGHOD P i C p ) not) +next-p P i C p | no not = od→ord (ODC.minimal O (PGHOD i C p ) not) data PD (P : CountableHOD ) (C : CountableOrdinal) : (x : Ordinal) (i : Nat) → Set n where pd0 : PD P C o∅ 0 @@ -202,16 +202,19 @@ -- p (suc n) = if ∃ q ∈ ord→od ( ctl→ n ) ∧ p n ⊆ q → q --- else p n -Gω2r : (x : Ordinal) → (lt : infinite ∋ ord→od x ) → Hω2 (ω→nat (ord→od x) lt ) x -Gω2r x = subst (λ k → (lt : odef infinite (od→ord (ord→od x))) → Hω2 (ω→nat (ord→od x) lt ) k ) diso ( ε-induction {ψ} {!!} (ord→od x)) where - ψ : HOD → Set n - ψ y = (lt : odef infinite (od→ord y) ) → Hω2 (ω→nat y lt ) (od→ord y ) - ind : {x : HOD} → ({y : HOD} → OD.def (od x) (od→ord y) → - (lt : infinite-d (od→ord y)) → Hω2 (ω→nat y lt) (od→ord y)) → - (lt : infinite-d (od→ord x)) → Hω2 (ω→nat x lt) (od→ord x) - ind {x} prev lt with ω→nat x lt - ... | Zero = subst (λ k → Hω2 Zero k) ? hφ - ... | Suc t = {!!} +ψ : HOD → Set n +ψ y = (lt : odef infinite (od→ord y) ) → Hω2 (ω→nat y lt ) (od→ord y ) +ind : (C : CountableOrdinal) → {x : HOD} → ({y : HOD} → OD.def (od x) (od→ord y) → + (lt : infinite-d (od→ord y)) → Hω2 (ω→nat y lt) (od→ord y)) → + (lt : infinite-d (od→ord x)) → Hω2 (ω→nat x lt) (od→ord x) +ind C {x} prev lt with ω→nat x lt +... | Zero = subst (λ k → Hω2 Zero k) {!!} hφ +... | Suc i with ODC.decp O ( PGHOD i C {!!} =h= od∅ ) | prev {{!!}} {!!} {!!} +ind C {x} prev lt | Suc i | yes p | s1 = he ? +ind C {x} prev lt | Suc i | no ¬p | s1 = {!!} + +Gω2r : (C : CountableOrdinal) → (x : Ordinal) → (lt : infinite ∋ ord→od x ) → Hω2 (ω→nat (ord→od x) lt ) x +Gω2r C x = subst (λ k → (lt : odef infinite (od→ord (ord→od x))) → Hω2 (ω→nat (ord→od x) lt ) k ) diso ( ε-induction {ψ} (ind C) (ord→od x)) P-GenericFilter : {P : CountableHOD } → (C : CountableOrdinal) → GenericFilter (phod P) P-GenericFilter {P} C = record {