Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 440:d1c9f5ae5d0a
give up this generic filter definition
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 01 Mar 2022 14:31:31 +0900 |
parents | fdcbf23ba2f9 |
children | 6b26db38367f eb4049abad70 |
files | src/LEMC.agda src/generic-filter.agda |
diffstat | 2 files changed, 29 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/src/LEMC.agda Sat Feb 26 17:44:30 2022 +0900 +++ b/src/LEMC.agda Tue Mar 01 14:31:31 2022 +0900 @@ -131,7 +131,6 @@ -- -- from https://math.stackexchange.com/questions/2973777/is-it-possible-to-prove-regularity-with-transfinite-induction-only -- - -- FIXME : don't use HOD make this level n, so we can remove ε-induction1 record Minimal (x : HOD) : Set (suc n) where field min : HOD
--- a/src/generic-filter.agda Sat Feb 26 17:44:30 2022 +0900 +++ b/src/generic-filter.agda Tue Mar 01 14:31:31 2022 +0900 @@ -79,7 +79,8 @@ --- -- p(n+1) = if (f n) != ∅ then (f n) otherwise p(n) --- +-- is not working well +-- skipped a(n) may cantains extra elements in possible r next-p : (p : Ordinal) → (f : HOD → HOD) → Ordinal next-p p f with is-o∅ ( & (f (* p))) next-p p f | yes y = p @@ -139,16 +140,24 @@ next : HOD is-small : next ⊆ p ∧ ( ¬ ( next =h= p )) -⊆-reduction : { ψ : (x : HOD) → Set (suc n) } - → (p : HOD) → ψ p - → (next : (x : HOD) → ψ x → ⊆-reduce x ) - → (ind : (x : HOD) → (m : ψ x) → ψ ( ⊆-reduce.next (next x m )) ) - → ψ od∅ -⊆-reduction {ψ} p ψp next ind = TransFinite {λ x → {!!} } {!!} o∅ +record ⊆-reduce-∅ (next : HOD → HOD) : Set (suc n) where + field + p : HOD + is-∅ : & (next p) ≡ o∅ +⊆-reduction : (next : (x : HOD) → ⊆-reduce x ) → (x : HOD) → ¬ ( x ∈ ( ⊆-reduce.next (next x ))) +⊆-reduction next x = subst (λ k → ¬ (x ∈ ⊆-reduce.next (next k))) *iso (r02 x) where + r01 : (x₁ : Ordinal) → ((y : Ordinal) → y o< x₁ → ¬ odef (⊆-reduce.next (next (* y))) y) → + ¬ odef (⊆-reduce.next (next (* x₁))) x₁ + r01 = {!!} + r02 : (x : HOD) → ¬ (x ∈ ⊆-reduce.next (next (* (& x)))) + r02 x = TransFinite0 {λ x → ¬ ( odef ( ⊆-reduce.next (next (* x))) x) } r01 (& x) -P-GenericFilter : (P p0 : HOD ) → (C : CountableModel P) → GenericFilter P -P-GenericFilter P p0 C = record { +next-x≡∅ : (next : HOD → HOD) → ( (x : HOD) → ¬ ( x ∈ next x) ) → ⊆-reduce-∅ next +next-x≡∅ = {!!} + +P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel P) → GenericFilter P +P-GenericFilter P p0 Pp0 C = record { genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } ; generic = λ D → {!!} } where @@ -168,26 +177,26 @@ pg-01 = incl (PGHOD∈PL i x ) (subst (λ k → PGHOD i P C k ∋ fmin ) &iso fmin∈PGHOD ) f⊆PL : PDHOD P p0 C ⊆ Power P f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x → - find-p-⊆P (gr lt) {!!} (& y) {!!} (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) } + find-p-⊆P (gr lt) _ (& y) Pp0 (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) } f1 : {p q : HOD} → q ⊆ P → PDHOD P p0 C ∋ p → p ⊆ q → PDHOD P p0 C ∋ q f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = {!!} ; pn<gr = {!!} ; x∈PP = {!!} } where -- reduction : {ψ : (x : HOD) → x =h= od∅ → P x} → -- q ∈ a(∃ n) ⊆ P → ( p n ⊆ q → PDHOD P p0 C ∋ q ) -- ∨ (¬ (p n ⊆ q) → induction on (p n - q) - PDNp : {!!} -- PD⊆⊆N P C (& p) - PDNp = PD∋p + -- PDNp : {!!} -- PD⊆⊆N P C (& p) + -- PDNp = PD∋p f02 : {x : Ordinal} → odef q x → odef P x f02 {x} lt = subst (λ k → def (od P) k) &iso (incl q⊆P (subst (λ k → def (od q) k) (sym &iso) lt) ) f03 : {x : Ordinal} → odef p x → odef q x f03 {x} lt = subst (λ k → def (od q) k) &iso (incl p⊆q (subst (λ k → def (od p) k) (sym &iso) lt) ) next1 : Ordinal next1 = {!!} -- find-p P C (gr PD) (next-p x (λ p₁ → PGHOD (gr PD) P C (& p₁))) - f05 : next1 o< ctl-M C - f05 = {!!} - f06 : odef (Power P) (& q) - f06 = {!!} - f07 : (y : Ordinal) → odef (* (& q)) y → odef (* {!!} ) y - f07 = {!!} + -- f05 : next1 o< ctl-M C + -- f05 = {!!} + -- f06 : odef (Power P) (& q) + -- f06 = {!!} + -- f07 : (y : Ordinal) → odef (* (& q)) y → odef (* {!!} ) y + -- f07 = {!!} f2 : {p q : HOD} → PDHOD P p0 C ∋ p → PDHOD P p0 C ∋ q → PDHOD P p0 C ∋ (p ∩ q) f2 {p} {q} PD∋p PD∋q = {!!} @@ -206,7 +215,7 @@ lemma725 : (P p : HOD ) (C : CountableModel P) → * (ctl-M C) ∋ Power P - → Incompatible P → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter P p C ))) + → Incompatible P → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter P p {!!} C ))) lemma725 = {!!} open import PFOD O @@ -220,7 +229,7 @@ lemma725-1 = {!!} lemma726 : (C : CountableModel HODω2) - → Union ( Replace HODω2 (λ p → filter ( genf ( P-GenericFilter HODω2 p C )))) =h= ω→2 + → Union ( Replace HODω2 (λ p → filter ( genf ( P-GenericFilter HODω2 p {!!} C )))) =h= ω→2 lemma726 = {!!} --