Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 856:d54487b6d43a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 06 Sep 2022 10:25:49 +0900 |
parents | 2569ace27176 |
children | 266e0b9027cd |
files | src/zorn.agda |
diffstat | 1 files changed, 26 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Sep 06 04:38:39 2022 +0900 +++ b/src/zorn.agda Tue Sep 06 10:25:49 2022 +0900 @@ -914,14 +914,22 @@ ... | ⟪ au , ch-init fc ⟫ = ⟪ subst (λ k → odef A k) (supfx b=x) au , ch-init (subst₂ (λ j k → FClosure A f j k ) refl (supfx b=x) fc) ⟫ ... | ⟪ au , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ subst (λ k → odef A k) (supfx b=x) au - , ch-is-sup u (subst (λ k → u o≤ k) (supfx b=x) u≤x) ? zc06 ⟫ where + , ch-is-sup u (subst (λ k → u o≤ k) (supfx b=x) u≤x) zc13 zc06 ⟫ where + zc13 : ChainP A f mf ay (supf1 px) u + zc13 with trio< u px + ... | tri< a ¬b ¬c = CP0→1 supf-mono (o<→≤ a) is-sup + ... | tri≈ ¬a b ¬c = CP0→1 supf-mono (o≤-refl0 b) is-sup + ... | tri> ¬a ¬b px<u = ? zc08 : supf0 u o≤ supf0 px zc08 = subst₂ (λ j k → j o≤ k) (sym (ChainP.supu=u is-sup)) refl u≤x zc06 : FClosure A f (supf1 px u) (supf1 px b) zc06 with osuc-≡< zc08 ... | case1 eq = subst₂ (λ j k → FClosure A f j k ) zc10 (supfx b=x) fc where zc10 : supf0 u ≡ supf1 px u - zc10 = ? + zc10 with trio< u px + ... | tri< a ¬b ¬c = refl + ... | tri≈ ¬a b ¬c = refl + ... | tri> ¬a ¬b px<u = eq ... | case2 lt = subst₂ (λ j k → FClosure A f j k ) (supf0=1 (o<→≤ zc09)) (supfx b=x) fc where zc09 : u o< px zc09 = supf-inject0 (ZChain.supf-mono zc) lt @@ -931,14 +939,28 @@ ... | ⟪ au , ch-init fc ⟫ = ⟪ subst (λ k → odef A k) (supf0=1 b≤px) au , ch-init (subst₂ (λ j k → FClosure A f j k ) refl (supf0=1 b≤px) fc) ⟫ ... | ⟪ au , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ subst (λ k → odef A k) (supf0=1 b≤px) au - , ch-is-sup u (subst (λ k → u o≤ k) (supf0=1 b≤px) u≤x) ? zc06 ⟫ where + , ch-is-sup u (subst (λ k → u o≤ k) (supf0=1 b≤px) u≤x) zc13 zc06 ⟫ where + zc13 : ChainP A f mf ay (supf1 px) u + zc13 with trio< u px + ... | tri< a ¬b ¬c = CP0→1 supf-mono (o<→≤ a) is-sup + ... | tri≈ ¬a b ¬c = CP0→1 supf-mono (o≤-refl0 b) is-sup + ... | tri> ¬a ¬b px<u = ? zc08 : supf0 u o≤ supf0 b zc08 = subst₂ (λ j k → j o≤ k) (sym (ChainP.supu=u is-sup)) refl u≤x zc06 : FClosure A f (supf1 px u) (supf1 px b) zc06 with osuc-≡< zc08 ... | case1 eq = subst₂ (λ j k → FClosure A f j k ) zc10 (supf0=1 b≤px) fc where zc10 : supf0 u ≡ supf1 px u - zc10 = ? + zc10 with trio< u px + ... | tri< a ¬b ¬c = refl + ... | tri≈ ¬a b ¬c = refl + ... | tri> ¬a ¬b px<u = zc12 where + zc11 : supf0 u o≤ supf0 px + zc11 = subst (λ k → k o≤ supf0 px ) (sym eq) ( ZChain.supf-mono zc b≤px ) + zc12 : supf0 u ≡ supf0 px + zc12 with osuc-≡< zc11 + ... | case1 eq2 = eq2 + ... | case2 lt = ⊥-elim ( o<> px<u (ZChain.supf-inject zc lt )) ... | case2 lt = subst₂ (λ j k → FClosure A f j k ) (supf0=1 zc09) (supf0=1 b≤px) fc where zc09 : u o≤ px zc09 = ordtrans (supf-inject0 (ZChain.supf-mono zc) lt) b≤px