Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 744:d92ad9e365b6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 21 Jul 2022 09:03:28 +0900 |
parents | 71556e611842 |
children | dc208a885e0c |
files | src/OrdUtil.agda src/zorn.agda |
diffstat | 2 files changed, 23 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OrdUtil.agda Thu Jul 21 07:58:34 2022 +0900 +++ b/src/OrdUtil.agda Thu Jul 21 09:03:28 2022 +0900 @@ -40,6 +40,7 @@ osuc-< {x} {y} y<ox x<y | case1 refl = o<¬≡ refl x<y osuc-< {x} {y} y<ox x<y | case2 y<x = o<> x<y y<x + open _∧_ ¬p<x<op : { p b : Ordinal } → ¬ ( (p o< b ) ∧ (b o< osuc p ) ) @@ -53,6 +54,12 @@ ... | tri≈ ¬a 0=b ¬c = ⊥-elim ( ¬x<0 ( subst (λ k → p o< k) (sym 0=b) p<b ) ) ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) +ob<x : {b x : Ordinal} (lim : ¬ (Oprev Ordinal osuc x ) ) (b<x : b o< x ) → osuc b o< x +ob<x {b} {x} lim b<x with trio< (osuc b) x +... | tri< a ¬b ¬c = a +... | tri≈ ¬a ob=x ¬c = ⊥-elim ( lim record { op = b ; oprev=x = ob=x } ) +... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ b<x , c ⟫ ) + osucc : {ox oy : Ordinal } → oy o< ox → osuc oy o< osuc ox osucc {ox} {oy} oy<ox with trio< (osuc oy) ox osucc {ox} {oy} oy<ox | tri< a ¬b ¬c = ordtrans a <-osuc
--- a/src/zorn.agda Thu Jul 21 07:58:34 2022 +0900 +++ b/src/zorn.agda Thu Jul 21 09:03:28 2022 +0900 @@ -496,9 +496,16 @@ m04 = ZChain1.is-max (prev px px<x) m03 b<px ab (case2 record {x<sup = λ {z} lt → IsSup.x<sup is-sup (chain-mono2 x ( o<→≤ (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc )) o≤-refl lt) } ) a<b ... | tri≈ ¬a b=px ¬c = ? -- b = px case - ... | no lim = record { is-max = is-max ; chain-mono2 = chain-mono2 x ; fcy<sup = ? } where + ... | no lim = record { is-max = is-max ; chain-mono2 = chain-mono2 x ; fcy<sup = fcy<sup ; sup=u = sup=u ; order = order } where fcy<sup : {u w : Ordinal} → u o< x → FClosure A f y w → w << ZChain.supf zc u - fcy<sup {u} {w} u<x fc = ? + fcy<sup {u} {w} u<x fc = ZChain1.fcy<sup (prev (osuc u) (ob<x lim u<x)) <-osuc fc + sup=u : {b : Ordinal} {ab : odef A b} → b o< x → + IsSup A (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) ab → + ZChain.supf zc b ≡ b + sup=u {b} {ab} b<x is-sup = ZChain1.sup=u (prev (osuc b) (ob<x lim b<x)) <-osuc is-sup + order : {b sup1 z1 : Ordinal} → b o< x → sup1 o< b → + FClosure A f (ZChain.supf zc sup1) z1 → z1 << ZChain.supf zc b + order {b} b<x s<b fc = ZChain1.order (prev (osuc b) (ob<x lim b<x)) <-osuc s<b fc is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → HasPrev A (UnionCF A f mf ay (ZChain.supf zc) x) ab f ∨ IsSup A (UnionCF A f mf ay (ZChain.supf zc) x) ab → @@ -507,23 +514,19 @@ is-max {a} {b} ua b<x ab (case2 is-sup) a<b with IsSup.x<sup is-sup (init-uchain A f mf ay ) ... | case1 b=y = ⊥-elim ( <-irr ( ZChain.initial zc (chain<ZA (chain-mono2 (osuc x) (o<→≤ <-osuc ) o≤-refl ua )) ) (subst (λ k → * a < * k ) (sym b=y) a<b ) ) - ... | case2 y<b = chain-mono2 x (o<→≤ ob<x) o≤-refl m04 where + ... | case2 y<b = chain-mono2 x (o<→≤ (ob<x lim b<x) ) o≤-refl m04 where y<s : y << ZChain.supf zc b y<s = y<s - ob<x : osuc b o< x - ob<x with trio< (osuc b) x - ... | tri< a ¬b ¬c = a - ... | tri≈ ¬a ob=x ¬c = ⊥-elim ( lim record { op = b ; oprev=x = ob=x } ) - ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ b<x , c ⟫ ) m07 : {z : Ordinal} → FClosure A f y z → z << ZChain.supf zc b - m07 {z} fc = ZChain1.fcy<sup (prev (osuc b) ob<x) <-osuc fc + m07 {z} fc = ZChain1.fcy<sup (prev (osuc b) (ob<x lim b<x)) <-osuc fc m08 : {sup1 z1 : Ordinal} → sup1 o< b → FClosure A f (ZChain.supf zc sup1) z1 → z1 << ZChain.supf zc b - m08 {sup1} {z1} s<b fc = ZChain1.order (prev (osuc b) ob<x) <-osuc s<b fc + m08 {sup1} {z1} s<b fc = ZChain1.order (prev (osuc b) (ob<x lim b<x) ) <-osuc s<b fc m05 : b ≡ ZChain.supf zc b - m05 = sym (ZChain1.sup=u (prev (osuc b) ob<x) {_} {ab} <-osuc - record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono2 x (o<→≤ ob<x) o≤-refl lt )} ) -- ZChain on x + m05 = sym (ZChain1.sup=u (prev (osuc b) (ob<x lim b<x)) {_} {ab} <-osuc + record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono2 x (o<→≤ (ob<x lim b<x)) o≤-refl lt )} ) -- ZChain on x m06 : ChainP A f mf ay (ZChain.supf zc) b b - m06 = record { fcy<sup = m07 ; csupz = subst (λ k → FClosure A f k b ) m05 (init ab) ; order = m08 ; y<s = y<s } + m06 = record { fcy<sup = m07 ; csupz = subst (λ k → FClosure A f k b ) m05 (init ab) ; order = m08 ; y<s = y<s + ; supfu=u = sym m05 } m04 : odef (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) b m04 = ⟪ ab , record { u = b ; u<x = case1 <-osuc ; uchain = ch-is-sup m06 (subst (λ k → FClosure A f k b) m05 (init ab)) } ⟫