Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 6:d9b704508281
isEquiv and isZF
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 May 2019 11:40:31 +0900 |
parents | c12d964a04c0 |
children | 813f1b3b000b |
files | zf.agda |
diffstat | 1 files changed, 40 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/zf.agda Sat May 11 11:10:53 2019 +0900 +++ b/zf.agda Sat May 11 11:40:31 2019 +0900 @@ -15,36 +15,36 @@ case1 : A → A ∨ B case2 : B → A ∨ B -open import Relation.Binary.PropositionalEquality +-- open import Relation.Binary.PropositionalEquality _⇔_ : {n : Level } → ( A B : Set n ) → Set n _⇔_ A B = ( A → B ) ∧ ( B → A ) +open import Data.Empty +open import Relation.Nullary + +open import Relation.Binary +open import Relation.Binary.Core + infixr 130 _∧_ infixr 140 _∨_ infixr 150 _⇔_ -open import Data.Empty -open import Relation.Nullary - -record ZF (n m : Level ) : Set (suc (n ⊔ m)) where - coinductive +record IsZF {n m : Level } + (ZFSet : Set n) + (_∋_ : ( A x : ZFSet ) → Set m) + (_≈_ : ( A B : ZFSet ) → Set m) + (∅ : ZFSet) + (_×_ : ( A B : ZFSet ) → ZFSet) + (Union : ( A : ZFSet ) → ZFSet) + (Power : ( A : ZFSet ) → ZFSet) + (Restrict : ( ZFSet → Set m ) → ZFSet) + (infinite : ZFSet) + : Set (suc (n ⊔ m)) where field - ZFSet : Set n - _∋_ : ( A x : ZFSet ) → Set m - _≈_ : ( A B : ZFSet ) → Set m - -- ZF Set constructor - ∅ : ZFSet - _×_ : ( A B : ZFSet ) → ZFSet - Union : ( A : ZFSet ) → ZFSet - Power : ( A : ZFSet ) → ZFSet - Restrict : ( ZFSet → Set m ) → ZFSet - infixl 200 _∋_ - infixr 210 _×_ - infixr 220 _≈_ - field + isEquivalence : {A B : ZFSet} → IsEquivalence {n} {m} {ZFSet} _≈_ -- ∀ x ∀ y ∃ z(x ∈ z ∧ y ∈ z) - pair : ( A B : ZFSet ) → A × B ∋ A ∧ A × B ∋ B + pair : ( A B : ZFSet ) → ( (A × B) ∋ A ) ∧ ( (A × B) ∋ B ) -- ∀ X ∃ A∀ t(t ∈ A ⇔ ∃ x ∈ X(t ∈ x)) union→ : ( X x y : ZFSet ) → X ∋ x → x ∋ y → Union X ∋ y union← : ( X x y : ZFSet ) → Union X ∋ y → X ∋ x → x ∋ y @@ -65,14 +65,32 @@ power→ : ( A t : ZFSet ) → Power A ∋ t → ∀ {x} {y} → _⊆_ t A {x} {y} power← : ( A t : ZFSet ) → ∀ {x} {y} → _⊆_ t A {x} {y} → Power A ∋ t -- extentionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) - extentionality : ( A B z : ZFSet ) → A ∋ z ⇔ B ∋ z → A ≈ B + extentionality : ( A B z : ZFSet ) → (( A ∋ z ) ⇔ (B ∋ z) ) → A ≈ B -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) -- smaller : ZFSet → ZFSet -- regularity : ( x : ZFSet ) → ¬ (x ≈ ∅) → smaller x ∩ x ≈ ∅ -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) - infinite : ZFSet infinity∅ : ∅ ∈ infinite infinity : ( x : ZFSet ) → x ∈ infinite → ( x ∪ Restrict ( λ y → x ≈ y )) ∈ infinite -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) replacement : ( ψ : ZFSet → Set m ) → ( y : ZFSet ) → y ∈ Restrict ψ → ψ y +record ZF {n m : Level } : Set (suc (n ⊔ m)) where + coinductive + infixr 210 _×_ + infixl 200 _∋_ + infixr 220 _≈_ + field + ZFSet : Set n + _∋_ : ( A x : ZFSet ) → Set m + _≈_ : ( A B : ZFSet ) → Set m + -- ZF Set constructor + ∅ : ZFSet + _×_ : ( A B : ZFSet ) → ZFSet + Union : ( A : ZFSet ) → ZFSet + Power : ( A : ZFSet ) → ZFSet + Restrict : ( ZFSet → Set m ) → ZFSet + infinite : ZFSet + field + isZF : IsZF ZFSet _∋_ _≈_ ∅ _×_ Union Power Restrict infinite +