Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 73:dd430a95610f
fix ordinal
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Jun 2019 18:17:24 +0900 |
parents | f39f1a90d154 |
children | 819da8c08f05 |
files | ordinal-definable.agda ordinal.agda zf.agda |
diffstat | 3 files changed, 36 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Sat Jun 01 14:43:05 2019 +0900 +++ b/ordinal-definable.agda Sat Jun 01 18:17:24 2019 +0900 @@ -358,14 +358,15 @@ union-lemma-u {X} {z} U>z = lemma <-osuc where lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} (o<→c< lt) refl diso - union→ : (X z u : OD) → (Union X ∋ u) ∧ (u ∋ z) → Union X ∋ z + union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y )) union→ X y u xx | tri< a ¬b ¬c = {!!} - union→ X y u xx | tri≈ ¬a b ¬c = {!!} - union→ X y u xx | tri> ¬a ¬b c = {!!} - -- c<→o< (transitive {n} {X} {x} {y} X∋x x∋y ) + union→ X y u xx | tri≈ ¬a b ¬c = lemma b (c<→o< (proj1 xx )) where + lemma : {oX ou ooy : Ordinal {suc n}} → ou ≡ ooy → ou o< oX → ooy o< oX + lemma refl lt = lt + union→ X y u xx | tri> ¬a ¬b c = ordtrans {suc n} {osuc ( od→ord y )} {od→ord u} {od→ord X} c ( c<→o< (proj1 xx )) union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u X z X∋z) ∧ (union-u X z X∋z ∋ z ) - union← X z X∋z = record { proj1 = {!!} ; proj2 = union-lemma-u X∋z } + union← X z X∋z = record { proj1 = def-subst {suc n} (o<→c< X∋z) oiso refl ; proj2 = union-lemma-u X∋z } ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y)
--- a/ordinal.agda Sat Jun 01 14:43:05 2019 +0900 +++ b/ordinal.agda Sat Jun 01 18:17:24 2019 +0900 @@ -42,7 +42,8 @@ o<-subst df refl refl = df osuc : {n : Level} ( x : Ordinal {n} ) → Ordinal {n} -osuc record { lv = lx ; ord = (Φ lv) } = record { lv = lx ; ord = OSuc lx (Φ lv) } +osuc record { lv = 0 ; ord = (Φ lv) } = record { lv = 0 ; ord = OSuc 0 (Φ lv) } +osuc record { lv = Suc lx ; ord = (Φ (Suc lv)) } = record { lv = Suc lx ; ord = ℵ lv } osuc record { lv = lx ; ord = (OSuc lx ox ) } = record { lv = lx ; ord = OSuc lx (OSuc lx ox) } osuc record { lv = Suc lx ; ord = ℵ lx } = record { lv = Suc lx ; ord = OSuc (Suc lx) (ℵ lx) } @@ -63,10 +64,35 @@ s<refl {n} {Suc lv} {ℵ lv} = ℵs< <-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x -<-osuc {n} { record { lv = lv ; ord = (Φ .(lv)) } } = case2 Φ< -<-osuc {n} { record { lv = lv ; ord = (OSuc lv ox ) } } = case2 ( s< s<refl ) +<-osuc {n} { record { lv = 0 ; ord = Φ 0 } } = case2 Φ< +<-osuc {n} { record { lv = (Suc lv) ; ord = Φ (Suc lv) } } = case2 ℵΦ< +<-osuc {n} {record { lv = Zero ; ord = OSuc .0 ox }} = case2 ( s< s<refl ) +<-osuc {n} {record { lv = Suc lv₁ ; ord = OSuc .(Suc lv₁) ox }} = case2 ( s< s<refl ) <-osuc {n} { record { lv = .(Suc lv₁) ; ord = (ℵ lv₁) } } = case2 ℵs< +osuc-lveq : {n : Level} { x : Ordinal {n} } → lv x ≡ lv ( osuc x ) +osuc-lveq {n} {record { lv = 0 ; ord = Φ 0 }} = refl +osuc-lveq {n} {record { lv = Suc lv ; ord = Φ (Suc lv) }} = refl +osuc-lveq {n} {record { lv = Zero ; ord = OSuc .0 ord₁ }} = refl +osuc-lveq {n} {record { lv = Suc lv₁ ; ord = OSuc .(Suc lv₁) ord₁ }} = refl +osuc-lveq {n} {record { lv = .(Suc lv₁) ; ord = ℵ lv₁ }} = refl + +nat-<> : { x y : Nat } → x < y → y < x → ⊥ +nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x + +osuc-< : {n : Level} { x y : Ordinal {n} } → y o< osuc x → x o< y → ⊥ +osuc-< {n} {record { lv = .0 ; ord = Φ .0 }} {record { lv = .(Suc _) ; ord = ord }} (case1 ()) (case1 (s≤s z≤n)) +osuc-< {n} {record { lv = .0 ; ord = OSuc .0 ord₁ }} {record { lv = .(Suc _) ; ord = ord }} (case1 ()) (case1 (s≤s z≤n)) +osuc-< {n} {record { lv = lx ; ord = xo }} {record { lv = ly ; ord = yo }} (case1 lt1) (case1 lt2) with osuc-lveq {n} {record { lv = lx ; ord = xo }} +osuc-< {n} {record { lv = Zero ; ord = Φ .0 }} {record { lv = ly ; ord = yo }} (case1 lt1) (case1 lt2) | eq = nat-<> lt1 lt2 +osuc-< {n} {record { lv = Suc lx ; ord = Φ .(Suc lx) }} {record { lv = ly ; ord = yo }} (case1 lt1) (case1 lt2) | eq = nat-<> lt1 lt2 +osuc-< {n} {record { lv = Zero ; ord = OSuc .0 xo }} {record { lv = ly ; ord = yo }} (case1 lt1) (case1 lt2) | eq = nat-<> lt1 lt2 +osuc-< {n} {record { lv = Suc lx ; ord = OSuc .(Suc lx) xo }} {record { lv = ly ; ord = yo }} (case1 lt1) (case1 lt2) | eq = nat-<> lt1 lt2 +osuc-< {n} {record { lv = .(Suc lv₁) ; ord = ℵ lv₁ }} {record { lv = ly ; ord = yo }} (case1 lt1) (case1 lt2) | refl = nat-<> lt1 lt2 +osuc-< {n} {x} {y} (case1 x₁) (case2 x₂) = {!!} +osuc-< {n} {x} {y} (case2 x₁) (case1 x₂) = {!!} +osuc-< {n} {x} {y} (case2 x₁) (case2 x₂) = {!!} + open import Relation.Binary.HeterogeneousEquality using (_≅_;refl) ordinal-cong : {n : Level} {x y : Ordinal {n}} →
--- a/zf.agda Sat Jun 01 14:43:05 2019 +0900 +++ b/zf.agda Sat Jun 01 18:17:24 2019 +0900 @@ -51,7 +51,7 @@ pair : ( A B : ZFSet ) → ( (A , B) ∋ A ) ∧ ( (A , B) ∋ B ) -- ∀ x ∃ y ∀ z (z ∈ y ⇔ ∃ u ∈ x ∧ (z ∈ u)) union-u : ( X z : ZFSet ) → Union X ∋ z → ZFSet - union→ : ( X z u : ZFSet ) → ((Union X ∋ u ) ∧ (u ∋ z )) → Union X ∋ z + union→ : ( X z u : ZFSet ) → ( X ∋ u ) ∧ (u ∋ z ) → Union X ∋ z union← : ( X z : ZFSet ) → (X∋z : Union X ∋ z ) → (X ∋ union-u X z X∋z) ∧ (union-u X z X∋z ∋ z ) _∈_ : ( A B : ZFSet ) → Set m A ∈ B = B ∋ A