Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 183:de3d87b7494f
fix zf
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Jul 2019 17:56:12 +0900 |
parents | 9f3c0e0b2bc9 |
children | 65e1b2e415bb |
files | OD.agda ordinal.agda zf.agda |
diffstat | 3 files changed, 15 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Jul 21 12:11:50 2019 +0900 +++ b/OD.agda Sun Jul 21 17:56:12 2019 +0900 @@ -71,10 +71,11 @@ -- sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} -- sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) - -- mimimul and x∋minimul is a weaker form of Axiom of choice + -- mimimul and x∋minimul is an Axiom of choice minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) + -- minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) _∋_ : { n : Level } → ( a x : OD {n} ) → Set n @@ -292,13 +293,14 @@ ; power→ = power→ ; power← = power← ; extensionality = extensionality - ; minimul = minimul - ; regularity = regularity + ; ε-induction = ε-induction ; infinity∅ = infinity∅ ; infinity = infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} ; replacement← = replacement← ; replacement→ = replacement→ + ; choice-func = choice-func + ; choice = choice } where pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B)
--- a/ordinal.agda Sun Jul 21 12:11:50 2019 +0900 +++ b/ordinal.agda Sun Jul 21 17:56:12 2019 +0900 @@ -343,4 +343,3 @@ → ¬ p TransFiniteExists {n} {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) -
--- a/zf.agda Sun Jul 21 12:11:50 2019 +0900 +++ b/zf.agda Sun Jul 21 17:56:12 2019 +0900 @@ -71,9 +71,14 @@ power← : ∀( A t : ZFSet ) → ( ∀ {x} → _⊆_ t A {x}) → Power A ∋ t -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) extensionality : { A B : ZFSet } → ( (z : ZFSet) → ( A ∋ z ) ⇔ (B ∋ z) ) → A ≈ B + -- This form of regurality forces choice function -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) - minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet - regularity : ∀( x : ZFSet ) → (not : ¬ (x ≈ ∅)) → ( minimul x not ∈ x ∧ ( minimul x not ∩ x ≈ ∅ ) ) + -- minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet + -- regularity : ∀( x : ZFSet ) → (not : ¬ (x ≈ ∅)) → ( minimul x not ∈ x ∧ ( minimul x not ∩ x ≈ ∅ ) ) + -- another form of regularity + ε-induction : { ψ : ZFSet → Set m} + → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) + → (x : ZFSet ) → ψ x -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) infinity∅ : ∅ ∈ infinite infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite @@ -81,9 +86,9 @@ -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) replacement← : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → x ∈ X → ψ x ∈ Replace X ψ replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → ( lt : x ∈ Replace X ψ ) → ¬ ( ∀ (y : ZFSet) → ¬ ( x ≈ ψ y ) ) - -- -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] - -- axiom-of-choice : Set (suc n) - -- axiom-of-choice = ? + -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] + choice-func : (X : ZFSet ) → {x : ZFSet } → ¬ ( x ≈ ∅ ) → ( X ∋ x ) → ZFSet + choice : (X : ZFSet ) → {A : ZFSet } → ( X∋A : X ∋ A ) → (not : ¬ ( A ≈ ∅ )) → A ∋ choice-func X not X∋A record ZF {n m : Level } : Set (suc (n ⊔ m)) where infixr 210 _,_