Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1190:e110b56d8cbe
...
author | kono |
---|---|
date | Mon, 27 Feb 2023 07:29:11 +0800 |
parents | 0201827b08ac |
children | d969fc17d049 6174001ba1c0 |
files | src/Topology.agda |
diffstat | 1 files changed, 29 insertions(+), 54 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Feb 26 18:30:23 2023 +0900 +++ b/src/Topology.agda Mon Feb 27 07:29:11 2023 +0800 @@ -281,7 +281,7 @@ data Finite-∪ (S : HOD) : Ordinal → Set n where fin-e : Finite-∪ S o∅ - fin-i : {x : Ordinal } → odef S x → Finite-∪ S x + fin-i : {x : Ordinal } → odef S x → Finite-∪ S (& ( * x , * x )) fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y)) record Compact {L : HOD} (top : Topology L) : Set n where @@ -353,7 +353,7 @@ fip21 : odef (L \ * y) ( FIP.limit fip (CCX ox) fip02 ) fip21 = subst (λ k → odef k ( FIP.limit fip (CCX ox) fip02 ) ) *iso ( FIP.is-limit fip (CCX ox) fip02 fip22 ) finCoverSet : {X : Ordinal } → (x : Ordinal) → Subbase (Replace (* X) (λ z → L \ z)) x → HOD - finCoverSet {X} x (gi rx) = L \ * x + finCoverSet {X} x (gi rx) = ( L \ * x ) , ( L \ * x ) finCoverSet {X} x∩y (g∩ {x} {y} sx sy) = finCoverSet {X} x sx ∪ finCoverSet {X} y sy -- -- this defines finite cover @@ -363,7 +363,9 @@ isFinite : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (finCover xo xcp) isFinite {X} xo xcp = fip60 o∅ (finCoverBase xo xcp) where fip60 : (x : Ordinal) → (sb : Subbase (Replace (* X) (λ z → L \ z)) x ) → Finite-∪ (* X) (& (finCoverSet {X} x sb)) - fip60 x (gi rx) = fin-i (fip61 rx) where + fip60 x (gi rx) = subst (λ k → Finite-∪ (* X) k) fip62 (fin-i (fip61 rx)) where + fip62 : & (* (& (L \ * x)) , * (& (L \ * x))) ≡ & ((L \ * x) , (L \ * x)) + fip62 = cong₂ (λ j k → & (j , k )) *iso *iso fip61 : odef (Replace (* X) (_\_ L)) x → odef (* X) ( & ((L \ * x ) )) fip61 record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef (* X) k) fip33 az1 where fip34 : * z1 ⊆ L @@ -382,57 +384,30 @@ finCoverSet x sx ∪ finCoverSet y sy ∎ ) where open ≡-Reasoning -- is also a cover isCover1 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → * (finCover xo xcp) covers L - isCover1 {X} xo xcp = subst₂ (λ j k → j covers k ) (sym *iso) (subst (λ k → L \ k ≡ L) (sym o∅≡od∅) L\0=L) ? where - fip45 : {L a b : HOD} → (L \ (a ∩ b)) ⊆ ( (L \ a) ∪ (L \ b)) - fip45 {L} {a} {b} {x} Lab with ODC.∋-p O b (* x) - ... | yes bx = case1 ⟪ proj1 Lab , (λ ax → proj2 Lab ⟪ ax , subst (λ k → odef b k) &iso bx ⟫ ) ⟫ - ... | no ¬bx = case2 ⟪ proj1 Lab , subst (λ k → ¬ ( odef b k)) &iso ¬bx ⟫ - fip43 : {A L a b : HOD } → A covers (L \ a) → A covers (L \ b ) → A covers ( L \ ( a ∩ b ) ) - fip43 {A} {L} {a} {b} ca cb = record { cover = fip44 ; P∋cover = fip46 ; isCover = fip47 } where - fip44 : {x : Ordinal} → odef (L \ (a ∩ b)) x → Ordinal - fip44 {x} Lab with fip45 {L} {a} {b} Lab - ... | case1 La = cover ca La - ... | case2 Lb = cover cb Lb - fip46 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef A (fip44 lt) - fip46 {x} Lab with fip45 {L} {a} {b} Lab - ... | case1 La = P∋cover ca La - ... | case2 Lb = P∋cover cb Lb - fip47 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef (* (fip44 lt)) x - fip47 {x} Lab with fip45 {L} {a} {b} Lab - ... | case1 La = isCover ca La - ... | case2 Lb = isCover cb Lb - fip40 : ( x y : Ordinal ) → * x ⊆ Replace (* X) (λ z → L \ z) → Subbase (* x) y - → (Replace (* x) (λ z → L \ z )) covers (L \ * y ) - fip40 x .(& (* _ ∩ * _)) x⊆r (g∩ {a} {b} sa sb) = subst (λ k → (Replace (* x) (λ z → L \ z)) covers ( L \ k ) ) (sym *iso) - ( fip43 {_} {L} {* a} {* b} fip41 fip42 ) where - fip41 : Replace (* x) (λ z → L \ z) covers (L \ * a) - fip41 = fip40 x a x⊆r sa - fip42 : Replace (* x) (λ z → L \ z) covers (L \ * b) - fip42 = fip40 x b x⊆r sb - fip40 x y x⊆r (gi sb) with x⊆r sb - ... | record { z = z ; az = az ; x=ψz = x=ψz } = record { cover = fip51 ; P∋cover = fip53 ; isCover = fip50 }where - fip51 : {w : Ordinal} (Lyw : odef (L \ * y) w) → Ordinal - fip51 {w} Lyw = z - fip52 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* X) z - fip52 {w} Lyw = az - fip55 : * z ⊆ L - fip55 {w} wz1 = os⊆L top (subst (λ k → odef (OS top) k) (sym &iso) (xo az)) wz1 - fip56 : * z ≡ L \ * y - fip56 = begin - * z ≡⟨ sym (L\Lx=x fip55 ) ⟩ - L \ ( L \ * z ) ≡⟨ cong (λ k → L \ k) (sym *iso) ⟩ - L \ * ( & ( L \ * z )) ≡⟨ cong (λ k → L \ * k) (sym x=ψz) ⟩ - L \ * y ∎ where open ≡-Reasoning - fip53 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (Replace (* x) (λ z₁ → L \ z₁)) z - fip53 {w} Lyw = record { z = _ ; az = sb ; x=ψz = fip54 } where - fip54 : z ≡ & ( L \ * y ) - fip54 = begin - z ≡⟨ sym &iso ⟩ - & (* z) ≡⟨ cong (&) fip56 ⟩ - & (L \ * y ) - ∎ where open ≡-Reasoning - fip50 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* z) w - fip50 {w} Lyw = subst (λ k → odef k w ) (sym fip56) Lyw + isCover1 {X} xo xcp = subst₂ (λ j k → j covers k ) (sym *iso) (subst (λ k → L \ k ≡ L) (sym o∅≡od∅) L\0=L) + (fip70 o∅ (finCoverBase xo xcp)) where + fip70 : (x : Ordinal) → (sb : Subbase (Replace (* X) (λ z → L \ z)) x ) → (finCoverSet {X} x sb) covers (L \ * x) + fip70 x (gi rx) = record { cover = λ _ → & (L \ * x) ; P∋cover = λ _ → case1 refl ; isCover = λ {x} lt → subst (λ k → odef k x) (sym *iso) lt } + fip70 x∩y (g∩ {x} {y} sx sy) = subst (λ k → finCoverSet (& (* x ∩ * y)) (g∩ sx sy) covers + (L \ k)) (sym *iso) ( fip43 {_} {L} {* x} {* y} ? ? ) where + fip45 : {L a b : HOD} → (L \ (a ∩ b)) ⊆ ( (L \ a) ∪ (L \ b)) + fip45 {L} {a} {b} {x} Lab with ODC.∋-p O b (* x) + ... | yes bx = case1 ⟪ proj1 Lab , (λ ax → proj2 Lab ⟪ ax , subst (λ k → odef b k) &iso bx ⟫ ) ⟫ + ... | no ¬bx = case2 ⟪ proj1 Lab , subst (λ k → ¬ ( odef b k)) &iso ¬bx ⟫ + fip43 : {A L a b : HOD } → A covers (L \ a) → A covers (L \ b ) → A covers ( L \ ( a ∩ b ) ) + fip43 {A} {L} {a} {b} ca cb = record { cover = fip44 ; P∋cover = fip46 ; isCover = fip47 } where + fip44 : {x : Ordinal} → odef (L \ (a ∩ b)) x → Ordinal + fip44 {x} Lab with fip45 {L} {a} {b} Lab + ... | case1 La = cover ca La + ... | case2 Lb = cover cb Lb + fip46 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef A (fip44 lt) + fip46 {x} Lab with fip45 {L} {a} {b} Lab + ... | case1 La = P∋cover ca La + ... | case2 Lb = P∋cover cb Lb + fip47 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef (* (fip44 lt)) x + fip47 {x} Lab with fip45 {L} {a} {b} Lab + ... | case1 La = isCover ca La + ... | case2 Lb = isCover cb Lb open _==_