Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1224:e1a1161df14c
...
author | kono |
---|---|
date | Tue, 07 Mar 2023 15:43:30 +0900 |
parents | 4b6c3ed64dd1 |
children | 5c4a088ae95b |
files | src/Tychonoff.agda src/ZProduct.agda |
diffstat | 2 files changed, 24 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Tue Mar 07 12:13:21 2023 +0900 +++ b/src/Tychonoff.agda Tue Mar 07 15:43:30 2023 +0900 @@ -325,6 +325,11 @@ uflQ : (F : Filter {Power Q} {Q} (λ x → x)) (UF : ultra-filter F) → UFLP TQ F UF uflQ F UF = FIP→UFLP TQ (Compact→FIP TQ CQ) F UF + FPQ→FQP : (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) → Filter {Power (ZFP Q P)} {ZFP Q P } (λ x → x) + FPQ→FQP F = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? } + projFP : (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) + → Filter {Power P} {P} (λ x → x) + projFP = ? -- Product of UFL has a limit point uflPQ : (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) → UFLP (ProductTopology TP TQ) F UF @@ -473,15 +478,6 @@ ty51 = filter2 F ty53 ty52 ty54 ty50 : filter F ∋ ZFP (p ∩ q) Q ty50 = subst (λ k → filter F ∋ k ) (sym (proj1 ZFP∩)) ty51 - ZFP\Q : {P Q p : HOD} → ( ZFP P Q \ ZFP p Q ) ≡ ZFP (P \ p) Q - ZFP\Q {P} {Q} {p} = ==→o≡ record { eq→ = ty70 ; eq← = ty71 } where - ty70 : {x : Ordinal } → odef ( ZFP P Q \ ZFP p Q ) x → odef (ZFP (P \ p) Q) x - ty70 ⟪ ab-pair {a} {b} Pa pb , npq ⟫ = ab-pair ty72 pb where - ty72 : odef (P \ p ) a - ty72 = ⟪ Pa , (λ pa → npq (ab-pair pa pb ) ) ⟫ - ty71 : {x : Ordinal } → odef (ZFP (P \ p) Q) x → odef ( ZFP P Q \ ZFP p Q ) x - ty71 (ab-pair {a} {b} ⟪ Pa , npa ⟫ Qb) = ⟪ ab-pair Pa Qb - , (λ pab → npa (subst (λ k → odef p k) (proj1 (zp-iso0 pab)) (zp1 pab)) ) ⟫ UFP : ultra-filter FP UFP = record { proper = ty61 ; ultra = ty60 } where ty61 : ¬ (FPSet ∋ od∅) @@ -495,7 +491,7 @@ ty60 {p} Pp Pnp with ultra-filter.ultra UF {ZFP p Q} (λ z xz → isP→PxQ (λ {x} lt → Pp _ (subst (λ k → odef k x) (sym *iso) lt)) (subst (λ k → odef k z) *iso xz)) ? ... | case1 fp = case1 (FPSet∋zpq (λ {z} xz → Pp z (subst (λ k → odef k z) (sym *iso) xz )) fp ) - ... | case2 fnp = case2 (FPSet∋zpq (λ pp → proj1 pp) (subst (λ k → odef (filter F) k) (cong (&) ZFP\Q) fnp )) + ... | case2 fnp = case2 (FPSet∋zpq (λ pp → proj1 pp) (subst (λ k → odef (filter F) k) (cong (&) (proj1 ZFP\Q)) fnp )) uflp : UFLP TP FP UFP uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP
--- a/src/ZProduct.agda Tue Mar 07 12:13:21 2023 +0900 +++ b/src/ZProduct.agda Tue Mar 07 15:43:30 2023 +0900 @@ -270,6 +270,24 @@ zfp04 : {x : Ordinal } (acx : odef (ZFP C A ) x )→ odef C (zπ1 acx) zfp04 (ab-pair x x₁) = x +open import BAlgebra O + +ZFP\Q : {P Q p : HOD} → (( ZFP P Q \ ZFP p Q ) ≡ ZFP (P \ p) Q ) ∧ (( ZFP P Q \ ZFP P p ) ≡ ZFP P (Q \ p) ) +ZFP\Q {P} {Q} {p} = ⟪ ==→o≡ record { eq→ = ty70 ; eq← = ty71 } , ==→o≡ record { eq→ = ty73 ; eq← = ty75 } ⟫ where + ty70 : {x : Ordinal } → odef ( ZFP P Q \ ZFP p Q ) x → odef (ZFP (P \ p) Q) x + ty70 ⟪ ab-pair {a} {b} Pa pb , npq ⟫ = ab-pair ty72 pb where + ty72 : odef (P \ p ) a + ty72 = ⟪ Pa , (λ pa → npq (ab-pair pa pb ) ) ⟫ + ty71 : {x : Ordinal } → odef (ZFP (P \ p) Q) x → odef ( ZFP P Q \ ZFP p Q ) x + ty71 (ab-pair {a} {b} ⟪ Pa , npa ⟫ Qb) = ⟪ ab-pair Pa Qb + , (λ pab → npa (subst (λ k → odef p k) (proj1 (zp-iso0 pab)) (zp1 pab)) ) ⟫ + ty73 : {x : Ordinal } → odef ( ZFP P Q \ ZFP P p ) x → odef (ZFP P (Q \ p) ) x + ty73 ⟪ ab-pair {a} {b} pa Qb , npq ⟫ = ab-pair pa ty72 where + ty72 : odef (Q \ p ) b + ty72 = ⟪ Qb , (λ qb → npq (ab-pair pa qb ) ) ⟫ + ty75 : {x : Ordinal } → odef (ZFP P (Q \ p) ) x → odef ( ZFP P Q \ ZFP P p ) x + ty75 (ab-pair {a} {b} Pa ⟪ Qb , nqb ⟫ ) = ⟪ ab-pair Pa Qb + , (λ pab → nqb (subst (λ k → odef p k) (proj2 (zp-iso0 pab)) (zp2 pab)) ) ⟫