Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 715:e4587714c376
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 15 Jul 2022 14:14:53 +0900 (2022-07-15) |
parents | e1ef5e6961ce |
children | b0cad3ec7da0 |
files | src/OrdUtil.agda src/zorn.agda |
diffstat | 2 files changed, 20 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OrdUtil.agda Fri Jul 15 12:35:59 2022 +0900 +++ b/src/OrdUtil.agda Fri Jul 15 14:14:53 2022 +0900 @@ -47,6 +47,12 @@ ... | case1 eq = o<¬≡ (sym eq) (proj1 P) ... | case2 lt = o<> lt (proj1 P) +b<x→0<x : { p b : Ordinal } → p o< b → o∅ o< b +b<x→0<x {p} {b} p<b with trio< o∅ b +... | tri< a ¬b ¬c = a +... | tri≈ ¬a 0=b ¬c = ⊥-elim ( ¬x<0 ( subst (λ k → p o< k) (sym 0=b) p<b ) ) +... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + osucc : {ox oy : Ordinal } → oy o< ox → osuc oy o< osuc ox osucc {ox} {oy} oy<ox with trio< (osuc oy) ox osucc {ox} {oy} oy<ox | tri< a ¬b ¬c = ordtrans a <-osuc
--- a/src/zorn.agda Fri Jul 15 12:35:59 2022 +0900 +++ b/src/zorn.agda Fri Jul 15 14:14:53 2022 +0900 @@ -621,9 +621,21 @@ ... | tri< a ¬b ¬c = ⟪ az , record { u = u ; u<x = case1 a ; uchain = ch-is-sup is-sup fc } ⟫ ... | tri≈ ¬a b ¬c = ? -- ⊥-elim ( noapx ( subst (λ k → odef A k ) (trans b (sym &iso) ) (ChainP.au is-sup ) )) ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → u o< k ) (sym (Oprev.oprev=x op)) u<x ⟫ ) - ... | tri≈ ¬a b=px ¬c = ? -- ⊥-elim ( noapx (subst (λ k → odef A k ) (trans b=px (sym &iso)) ab ) ) ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) - -- subst (λ k → odef chain0 k ) (trans (sym (HasPrev.x=fy pr )) (trans &iso (sym b=x)) ) ( ZChain.f-next zc (HasPrev.ay pr)) + ... | tri≈ ¬a b=px ¬c = zc15 where + zc14 : f (HasPrev.y pr) ≡ b + zc14 = begin f (HasPrev.y pr) ≡⟨ sym (HasPrev.x=fy pr) ⟩ + & (* px) ≡⟨ &iso ⟩ + px ≡⟨ sym b=px ⟩ + b ∎ where open ≡-Reasoning + zc15 : odef pchain b + zc15 with ZChain.f-next zc (HasPrev.ay pr) + ... | ⟪ az , record { u = u ; u<x = case2 refl ; uchain = ch-init z fc } ⟫ + = ⟪ subst (λ k → odef A k ) zc14 az , record { u = u ; u<x = case2 refl + ; uchain = ch-init _ (subst (λ k → FClosure A f y k ) zc14 fc) } ⟫ + ... | ⟪ az , record { u = u ; u<x = case1 u<x ; uchain = ch-init z fc } ⟫ + = ⟪ subst (λ k → odef A k ) zc14 az , record { u = u ; u<x = case1 (b<x→0<x b<x ) + ; uchain = ch-init _ (subst (λ k → FClosure A f y k ) zc14 fc) } ⟫ ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) apx ) ... | case1 is-sup = -- x is a sup of zc record { chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal