Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 154:e51c23eb3803
union trying ..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 10 Jul 2019 11:50:26 +0900 |
parents | f1801c4735d3 |
children | 53371f91ce63 |
files | HOD.agda |
diffstat | 1 files changed, 18 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Wed Jul 10 06:52:00 2019 +0900 +++ b/HOD.agda Wed Jul 10 11:50:26 2019 +0900 @@ -214,7 +214,7 @@ ZFSubset A x = record { def = λ y → def A y ∧ def x y } where Def : {n : Level} → (A : OD {suc n}) → OD {suc n} -Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) +Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) -- Ord x does not help ord-power→ OrdSubset : {n : Level} → (A x : Ordinal {suc n} ) → ZFSubset (Ord A) (Ord x) ≡ Ord ( minα A x ) OrdSubset {n} A x = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where @@ -313,38 +313,39 @@ ord-⊆ : ( t x : OD {suc n} ) → _⊆_ t (Ord (od→ord t )) {x} ord-⊆ t x lt = c<→o< lt + o<→c< : {x y : Ordinal {suc n}} {z : OD {suc n}}→ x o< y → _⊆_ (Ord x) (Ord y) {z} + o<→c< lt lt1 = ordtrans lt1 lt + -- a ⊆ b → od→ord a o≤ od→ord b ? - union-d : (X : OD {suc n}) → OD {suc n} - union-d X = record { def = λ y → def X (osuc y) } + Union-o : (X : Ordinal {suc n}) → OD {suc n} + Union-o X = record { def = λ y → osuc y o< X } + union-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} - union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) ) - ord-union→ : (x : Ordinal) (z u : OD) → (Ord x ∋ u) ∧ (u ∋ z) → Union (Ord x) ∋ z + union-u {X} {z} U>z = ord→od ( osuc ( od→ord z ) ) + ord-union→ : (x : Ordinal) (z u : OD) → (Ord x ∋ u) ∧ (u ∋ z) → Union-o x ∋ z ord-union→ x z u plt with trio< ( od→ord u ) ( osuc ( od→ord z )) ord-union→ x z u plt | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 plt)) ord-union→ x z u plt | tri< a ¬b ¬c | () ord-union→ x z u plt | tri≈ ¬a b ¬c = subst ( λ k → k o< x ) b (proj1 plt) ord-union→ x z u plt | tri> ¬a ¬b c = otrans (proj1 plt) c - ord-union← : (x : Ordinal) (z : OD) (X∋z : Union (Ord x) ∋ z) → (Ord x ∋ union-u {Ord x} {z} X∋z ) ∧ (union-u {Ord x} {z} X∋z ∋ z ) - ord-union← x z X∋z = record { proj1 = lemma ; proj2 = <-osuc } where + ord-union← : (x : Ordinal) (z : OD) (X∋z : Union-o x ∋ z) + → (Ord x ∋ union-u {Ord x} {z} X∋z ) ∧ (union-u {Ord x} {z} X∋z ∋ z ) + ord-union← x z X∋z = record { proj1 = lemma ; proj2 = {!!} } where lemma : Ord x ∋ union-u {Ord x} {z} X∋z - lemma = def-subst {suc n} {_} {_} {Ord x} {_} X∋z refl ? + lemma = def-subst {suc n} {_} {_} {Ord x} {_} X∋z refl (sym diso) union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) union→ X z u xx | tri< a ¬b ¬c | () union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b - union→ X z u xx | tri> ¬a ¬b c = def-subst lemma1 (sym lemma0) diso where - lemma0 : X ≡ Ord (od→ord X) - lemma0 = sym {!!} - lemma : osuc (od→ord z) o< od→ord X - lemma = ordtrans c ( c<→o< ( proj1 xx ) ) - lemma1 : Ord ( od→ord X) ∋ ord→od (osuc (od→ord z) ) - lemma1 = o<-subst lemma (sym diso) refl + union→ X z u xx | tri> ¬a ¬b c = {!!} union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z ) - union← X z UX∋z = record { proj1 = lemma ; proj2 = <-osuc } where + union← X z UX∋z = record { proj1 = lemma ; proj2 = lemma2 } where lemma : X ∋ union-u {X} {z} UX∋z - lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} UX∋z refl {!!} + lemma = {!!} -- def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} UX∋z refl {!!} + lemma2 : union-u {X} UX∋z ∋ z + lemma2 = {!!} ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t