Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 453:e5f0ac638c01
P should be an order structure not Power Ser
definition of dense is wrong
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 15 Mar 2022 14:09:20 +0900 |
parents | 76aba34438f2 |
children | 0d3d72dba75b |
files | src/generic-filter.agda |
diffstat | 1 files changed, 30 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Mon Mar 14 23:37:18 2022 +0900 +++ b/src/generic-filter.agda Tue Mar 15 14:09:20 2022 +0900 @@ -54,15 +54,14 @@ import OPair open OPair O -record CountableModel (P : HOD) : Set (suc (suc n)) where +record CountableModel : Set (suc (suc n)) where field ctl-M : Ordinal ctl→ : Nat → Ordinal - ctl← : (x : Ordinal )→ x o< ctl-M → Nat - ctl<M : (x : Nat) → ctl→ x o< ctl-M - ctl-iso→ : { x : Ordinal } → (lt : x o< ctl-M) → ctl→ (ctl← x lt ) ≡ x + ctl<M : (x : Nat) → odef (* ctl-M) (ctl→ x) + ctl← : (x : Ordinal )→ odef (* ctl-M ) x → Nat + ctl-iso→ : { x : Ordinal } → (lt : odef (* ctl-M) x ) → ctl→ (ctl← x lt ) ≡ x ctl-iso← : { x : Nat } → ctl← (ctl→ x ) (ctl<M x) ≡ x - ctl-P∈M : Power P ∈ * ctl-M -- -- almmost universe -- find-p contains ∃ x : Ordinal → x o< & M → ∀ r ∈ M → ∈ Ord x @@ -76,7 +75,7 @@ -- a(n) ∈ M -- ∃ q ∈ Power P → q ∈ a(n) ∧ p(n) ⊆ q -- -PGHOD : (i : Nat) (P : HOD) (C : CountableModel P) → (p : Ordinal) → HOD +PGHOD : (i : Nat) (P : HOD) (C : CountableModel ) → (p : Ordinal) → HOD PGHOD i P C p = record { od = record { def = λ x → odef (Power P) x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* p) y → odef (* x) y ) } ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) (proj1 lt) } @@ -84,7 +83,7 @@ --- -- p(n+1) = if (f n) != ∅ then (f n) otherwise p(n) -- -find-p : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : Ordinal) → Ordinal +find-p : (P : HOD ) (C : CountableModel ) (i : Nat) → (x : Ordinal) → Ordinal find-p P C Zero x = x find-p P C (Suc i) x with is-o∅ ( & ( PGHOD i P C (find-p P C i x)) ) ... | yes y = find-p P C i x @@ -93,7 +92,7 @@ --- -- G = { r ∈ Power P | ∃ n → p(n) ⊆ r } -- -record PDN (P p : HOD ) (C : CountableModel P) (x : Ordinal) : Set n where +record PDN (P p : HOD ) (C : CountableModel ) (x : Ordinal) : Set n where field gr : Nat pn<gr : (y : Ordinal) → odef (* (find-p P C gr (& p))) y → odef (* x) y @@ -104,7 +103,7 @@ --- -- G as a HOD -- -PDHOD : (P p : HOD ) (C : CountableModel P ) → HOD +PDHOD : (P p : HOD ) (C : CountableModel ) → HOD PDHOD P p C = record { od = record { def = λ x → PDN P p C x } ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.x∈PP lt) } @@ -128,7 +127,7 @@ open import nat open _⊆_ -p-monotonic1 : (P p : HOD ) (C : CountableModel P ) → {n : Nat} → (* (find-p P C n (& p))) ⊆ (* (find-p P C (Suc n) (& p))) +p-monotonic1 : (P p : HOD ) (C : CountableModel ) → {n : Nat} → (* (find-p P C n (& p))) ⊆ (* (find-p P C (Suc n) (& p))) p-monotonic1 P p C {n} with is-o∅ (& (PGHOD n P C (find-p P C n (& p)))) ... | yes y = refl-⊆ ... | no not = record { incl = λ {x} lt → proj2 (proj2 fmin∈PGHOD) (& x) lt } where @@ -137,7 +136,7 @@ fmin∈PGHOD : PGHOD n P C (find-p P C n (& p)) ∋ fmin fmin∈PGHOD = ODC.x∋minimal O (PGHOD n P C (find-p P C n (& p))) (λ eq → not (=od∅→≡o∅ eq)) -p-monotonic : (P p : HOD ) (C : CountableModel P ) → {n m : Nat} → n ≤ m → (* (find-p P C n (& p))) ⊆ (* (find-p P C m (& p))) +p-monotonic : (P p : HOD ) (C : CountableModel ) → {n m : Nat} → n ≤ m → (* (find-p P C n (& p))) ⊆ (* (find-p P C m (& p))) p-monotonic P p C {Zero} {Zero} n≤m = refl-⊆ p-monotonic P p C {Zero} {Suc m} z≤n = trans-⊆ (p-monotonic P p C {Zero} {m} z≤n ) (p-monotonic1 P p C {m} ) p-monotonic P p C {Suc n} {Suc m} (s≤s n≤m) with <-cmp n m @@ -145,7 +144,7 @@ ... | tri≈ ¬a refl ¬c = refl-⊆ ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> n≤m c ) -P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel P) → GenericFilter P +P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel ) → GenericFilter P P-GenericFilter P p0 Pp0 C = record { genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } ; generic = fdense @@ -208,12 +207,12 @@ p⊆r : p ⊆ r incompatible : ∀ ( s : HOD ) → s ⊆ P → (¬ ( q ⊆ s )) ∨ (¬ ( r ⊆ s )) -lemma725 : (P p : HOD ) (C : CountableModel P) - → (pp0 : Power P ∋ p ) +lemma725 : (P p : HOD ) (C : CountableModel ) + → (PP∋p : Power P ∋ p ) → * (ctl-M C) ∋ (Power P ∩ * (ctl-M C)) -- M is a Model of ZF - → * (ctl-M C) ∋ ( (Power P ∩ * (ctl-M C)) \ filter ( genf ( P-GenericFilter P p pp0 C)) ) -- M ∋ G and M is a Model of ZF + → * (ctl-M C) ∋ ( (Power P ∩ * (ctl-M C)) \ filter ( genf ( P-GenericFilter P p PP∋p C)) ) -- M ∋ G and M is a Model of ZF → ((p : HOD) → (PP∋p : p ⊆ P ) → Incompatible P p PP∋p ) - → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter P p pp0 C ))) + → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter P p PP∋p C ))) lemma725 P p C PP∋p M∋PM M∋D I M∋G = D∩G≠∅ D∩G=∅ where G = filter ( genf ( P-GenericFilter P p PP∋p C )) M = * (ctl-M C) @@ -222,25 +221,25 @@ p⊆P : p ⊆ P p⊆P = ODC.power→⊆ O _ _ PP∋p df : {x : HOD} → x ⊆ P → HOD - df {x} PP∋x with Incompatible.incompatible (I x PP∋x) x PP∋x - ... | case1 q = Incompatible.q (I x PP∋x) - ... | case2 r = Incompatible.r (I x PP∋x) - df¬⊆ : {x : HOD} → (lt : x ⊆ P) → ¬ ( df lt ⊆ x ) - df¬⊆ {x} PP∋x with Incompatible.incompatible (I x PP∋x) x PP∋x - ... | case1 q = q - ... | case2 r = r + df {x} PP∋x with ODC.∋-p O G ( Incompatible.r (I x PP∋x) ) + ... | yes y = Incompatible.q (I x PP∋x) + ... | no n = Incompatible.r (I x PP∋x) df¬⊆P : {x : HOD} → (lt : x ⊆ P) → df lt ⊆ P - df¬⊆P {x} PP∋x with Incompatible.incompatible (I x PP∋x) x PP∋x - ... | case1 q = Incompatible.PP∋q (I x PP∋x) - ... | case2 r = Incompatible.PP∋r (I x PP∋x) + df¬⊆P {x} PP∋x with ODC.∋-p O G ( Incompatible.r (I x PP∋x) ) + ... | yes _ = Incompatible.PP∋q (I x PP∋x) + ... | no _ = Incompatible.PP∋r (I x PP∋x) ¬G∋df : {x : HOD} → (lt : x ⊆ P) → ¬ G ∋ (df lt ) - ¬G∋df {x} lt g = {!!} + ¬G∋df {x} lt with ODC.∋-p O G ( Incompatible.r (I x lt ) ) + ... | no n = n + ... | yes y with Incompatible.incompatible (I x lt ) (Incompatible.q (I x lt )) (Incompatible.PP∋q (I x lt )) + ... | case1 ¬q⊆pn = λ _ → ¬q⊆pn refl-⊆ + ... | case2 ¬r⊆pn = {!!} df-d : {x : HOD} → (lt : x ⊆ P) → D ∋ df lt df-d {x} lt = ⟪ power← P _ (incl (df¬⊆P lt)) , ¬G∋df lt ⟫ df-p : {x : HOD} → (lt : x ⊆ P) → x ⊆ df lt - df-p {x} lt with Incompatible.incompatible (I x lt) x lt - ... | case1 q = Incompatible.p⊆q (I x lt) - ... | case2 r = Incompatible.p⊆r (I x lt) + df-p {x} lt with ODC.∋-p O G ( Incompatible.r (I x lt) ) + ... | yes _ = Incompatible.p⊆q (I x lt) + ... | no _ = Incompatible.p⊆r (I x lt) D-Dense : Dense P D-Dense = record { dense = D @@ -264,7 +263,7 @@ lemma725-1 : (p : HOD) → (PP∋p : p ⊆ HODω2 ) → Incompatible HODω2 p PP∋p lemma725-1 = {!!} -lemma726 : (C : CountableModel HODω2) +lemma726 : (C : CountableModel ) → Union ( Replace' (Power HODω2) (λ p lt → filter ( genf ( P-GenericFilter HODω2 p lt C )))) =h= ω→2 -- HODω2 ∋ p lemma726 = {!!}