Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 619:e766238b69d2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Jun 2022 10:16:19 +0900 |
parents | b726eedf9041 |
children | 3938bed729a5 |
files | src/zorn.agda |
diffstat | 1 files changed, 14 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Jun 18 09:26:06 2022 +0900 +++ b/src/zorn.agda Sat Jun 18 10:16:19 2022 +0900 @@ -586,23 +586,22 @@ u-chain∋x : odef Uz y u-chain∋x = record { u = y ; u<x = y<x ; chain∋z = ZChain.chain∋x (prev y y<x ay ) } - ind-mono : {a b : Ordinal } → (zb : ZChain A y f b) → - (z : Ordinal) - → ((c : Ordinal) → c o< z → a o≤ b → b o≤ c → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i) - → a o≤ b → b o≤ z → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i - ind-mono {a} {b} zb z prev-mono a≤b b≤z za {i} zai = mc01 where + ind-mono : {a : Ordinal } + → (b : Ordinal) + → ((c : Ordinal) → c o< b → a o≤ c → c o≤ x → (za : ZChain A y f a) (zc : ZChain A y f c) {i : Ordinal} + → odef (ZChain.chain za) i → odef (ZChain.chain zc) i) + → a o≤ b → b o≤ x → (za : ZChain A y f a) (zb : ZChain A y f b) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i + ind-mono {a} z prev-mono a≤b b≤z za zb {i} zai = mc01 where open ZChain mc01 : odef (chain zb) i - mc01 with trio< b z | osuc-≡< b≤z - ... | tri< b<z ¬b ¬c | _ = prev-mono b b<z a≤b <-osuc za zai - ... | tri> ¬a ¬b b>z | case1 b=z = ⊥-elim ( ¬b b=z ) - ... | tri> ¬a ¬b b>z | case2 b<z = ⊥-elim ( ¬a b<z ) - ... | tri≈ ¬a b=z ¬c | _ with Oprev-p z + mc01 with Oprev-p z ... | yes op = mc00 where open ZChain pz = Oprev.oprev op zc0 : ZChain A y f (Oprev.oprev op) - zc0 = prev pz (subst (λ k → pz o< k) {!!} <-osuc ) ay + zc0 = prev pz {!!} ay + zc0∋i : odef (chain zc0) i + zc0∋i = prev-mono pz {!!} {!!} {!!} za zc0 zai mc00 : odef (chain zb) i mc00 with ODC.∋-p O A (* z) ... | no noaz = {!!} @@ -618,12 +617,13 @@ chain-mono : { a b : Ordinal } → (zx : ZChain A y f a ) → (zy : ZChain A y f b) → a o≤ b → b o< osuc x → ZChain.chain zx ⊆' ZChain.chain zy - chain-mono {a} {b} za zb a≤b b≤x = TransFinite {λ x → - a o≤ b → b o≤ x → (za : ZChain A y f a) → {i : Ordinal } → odef (ZChain.chain za) i → odef (ZChain.chain zb) i } - (ind-mono zb) x a≤b b≤x za + chain-mono {a} {b} za zb a≤b b≤x = TransFinite {λ b → + a o≤ b → b o≤ x → (za : ZChain A y f a) (zb : ZChain A y f b) → {i : Ordinal } → odef (ZChain.chain za) i → odef (ZChain.chain zb) i } + ind-mono b a≤b b≤x za zb u-mono : ( a b : Ordinal ) → b o< osuc x → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za ⊆' ZChain.chain zb u-mono a b b≤x a≤b za zb {i} zai = {!!} -- chain-mono ay f mf za zb a≤b b≤x zai + u-total : IsTotalOrderSet Uz u-total {x} {y} ux uy with trio< (UZFChain.u ux) (UZFChain.u uy) ... | tri< a ¬b ¬c = ZChain.f-total (uzc uy) (u-mono (UZFChain.u ux) (UZFChain.u uy)