Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 618:b726eedf9041
nested transfinie on monotonicity
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Jun 2022 09:26:06 +0900 |
parents | 50999e72f19f |
children | e766238b69d2 |
files | src/zorn.agda |
diffstat | 1 files changed, 30 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Jun 18 00:41:37 2022 +0900 +++ b/src/zorn.agda Sat Jun 18 09:26:06 2022 +0900 @@ -548,8 +548,8 @@ ... | case1 y=b = subst (λ k → odef chain0 k ) y=b ( ZChain.chain∋x zc0 ) ... | case2 y<b = ZChain.is-max zc0 (ZChain.chain∋x zc0 ) (zc0-b<x b b<x) ab (case2 (z24 p)) y<b ... | case2 ¬x=sup = -- x is not f y' nor sup of former ZChain from y - record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; chain∋sup = {!!} - ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = z18 ; fc∨sup = {!!} } where + record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = z18 } where -- no extention z18 : {a b : Ordinal} → odef (ZChain.chain zc0) a → b o< osuc x → (ab : odef A b) → HasPrev A (ZChain.chain zc0) ab f ∨ IsSup A (ZChain.chain zc0) ab → @@ -586,34 +586,41 @@ u-chain∋x : odef Uz y u-chain∋x = record { u = y ; u<x = y<x ; chain∋z = ZChain.chain∋x (prev y y<x ay ) } - ind-mono : {y : Ordinal } (ay : odef A y ) {a b : Ordinal } ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (zb : ZChain A y f b) → - (x : Ordinal) - → ((c : Ordinal) → c o< x → a o≤ b → b o≤ c → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i) - → a o≤ b → b o≤ x → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i - ind-mono {y} ay {a} {b} f mf zb x prev-mono a≤b b≤x za {i} zai with Oprev-p x - ... | yes op = mc00 where + ind-mono : {a b : Ordinal } → (zb : ZChain A y f b) → + (z : Ordinal) + → ((c : Ordinal) → c o< z → a o≤ b → b o≤ c → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i) + → a o≤ b → b o≤ z → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i + ind-mono {a} {b} zb z prev-mono a≤b b≤z za {i} zai = mc01 where + open ZChain + mc01 : odef (chain zb) i + mc01 with trio< b z | osuc-≡< b≤z + ... | tri< b<z ¬b ¬c | _ = prev-mono b b<z a≤b <-osuc za zai + ... | tri> ¬a ¬b b>z | case1 b=z = ⊥-elim ( ¬b b=z ) + ... | tri> ¬a ¬b b>z | case2 b<z = ⊥-elim ( ¬a b<z ) + ... | tri≈ ¬a b=z ¬c | _ with Oprev-p z + ... | yes op = mc00 where open ZChain - px = Oprev.oprev op + pz = Oprev.oprev op zc0 : ZChain A y f (Oprev.oprev op) - zc0 = {!!} -- zfx (Oprev.oprev op) ay f mf + zc0 = prev pz (subst (λ k → pz o< k) {!!} <-osuc ) ay mc00 : odef (chain zb) i - mc00 with ODC.∋-p O A (* x) - ... | no noax = {!!} - ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc0) ax f ) + mc00 with ODC.∋-p O A (* z) + ... | no noaz = {!!} + ... | yes az with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc0) az f ) ... | case1 pr = {!!} - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) ax ) - ... | case1 is-sup = {!!} -- x is a sup of zc0 - ... | case2 ¬x=sup = {!!} - ... | no ¬ox with trio< x y - ... | tri< a ¬b ¬c = {!!} - ... | tri≈ ¬a b ¬c = {!!} - ... | tri> ¬a ¬b y<x = {!!} + ... | case2 ¬fy<z with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) az ) + ... | case1 is-sup = {!!} -- z is a sup of zc0 + ... | case2 ¬z=sup = {!!} + ... | no ¬oz with trio< z y + ... | tri< a ¬b ¬c = {!!} + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b y<z = {!!} - chain-mono : {x y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) { a b : Ordinal } + chain-mono : { a b : Ordinal } → (zx : ZChain A y f a ) → (zy : ZChain A y f b) → a o≤ b → b o< osuc x → ZChain.chain zx ⊆' ZChain.chain zy - chain-mono {x} {y} ay f mf {a} {b} za zb a≤b b≤x = TransFinite {λ x → + chain-mono {a} {b} za zb a≤b b≤x = TransFinite {λ x → a o≤ b → b o≤ x → (za : ZChain A y f a) → {i : Ordinal } → odef (ZChain.chain za) i → odef (ZChain.chain zb) i } - (ind-mono ay f mf zb) x a≤b b≤x za + (ind-mono zb) x a≤b b≤x za u-mono : ( a b : Ordinal ) → b o< osuc x → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za ⊆' ZChain.chain zb u-mono a b b≤x a≤b za zb {i} zai = {!!} -- chain-mono ay f mf za zb a≤b b≤x zai