Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 617:50999e72f19f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Jun 2022 00:41:37 +0900 |
parents | fae0fa6184d5 |
children | b726eedf9041 |
files | src/zorn.agda |
diffstat | 1 files changed, 40 insertions(+), 77 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Jun 18 00:07:25 2022 +0900 +++ b/src/zorn.agda Sat Jun 18 00:41:37 2022 +0900 @@ -233,21 +233,6 @@ field x<sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) -record FChain ( A : HOD ) ( f : Ordinal → Ordinal ) (p c z : Ordinal) ( x : Ordinal ) : Set n where - field - fc∨sup : FClosure A f p x - chain∋p : odef (* c) p - -record FSup ( A : HOD ) ( f : Ordinal → Ordinal ) (p c z : Ordinal) ( x : Ordinal ) : Set n where - field - sup : (z : Ordinal) → FClosure A f p z → * z < * x - chain∋p : odef (* c) p - -data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (c z : Ordinal) : (x : Ordinal) → Set n where - Finit : {i : Ordinal} → i ≡ y → Fc∨sup A ay f c z i - Fsup : {p x : Ordinal} → p o< x → Fc∨sup A ay f c z p → FSup A f p c z x → x o< osuc z → Fc∨sup A ay f c z x - Fc : {p x : Ordinal} → p o< x → Fc∨sup A ay f c z p → FChain A f p c z x → Fc∨sup A ay f c z x - record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where field chain : HOD @@ -260,9 +245,6 @@ is-max : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc z → (ab : odef A b) → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b - chain∋sup : (s : HOD) → s ⊆' chain → {b : Ordinal} (ab : odef A b) → b o< osuc z → IsSup A s ab → odef chain b - fc∨sup : {c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A chain∋x) f (& chain) z c - record Maximal ( A : HOD ) : Set (Level.suc n) where field @@ -406,22 +388,18 @@ ys {y} ay f mf = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = {!!} } init-chain : {y x : Ordinal} → (ay : odef A y) (f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → x o< osuc y → ZChain A y f x init-chain {y} {x} ay f mf x≤y = record { chain = ys ay f mf ; chain⊆A = λ fx → A∋fc y f mf fx - ; f-total = i-total ; f-next = λ {x} sx → fsuc x sx ; chain∋sup = {!!} - ; initial = {!!} ; f-immediate = {!!} ; chain∋x = init ay ; is-max = is-max ; fc∨sup = it01 } where + ; f-total = i-total ; f-next = λ {x} sx → fsuc x sx + ; initial = {!!} ; f-immediate = {!!} ; chain∋x = init ay ; is-max = is-max } where i-total : IsTotalOrderSet (ys ay f mf ) i-total fa fb = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp y f mf fa fb) is-max : {a b : Ordinal} → odef (ys ay f mf) a → b o< osuc x → (ab : odef A b) → HasPrev A (ys ay f mf) ab f ∨ IsSup A (ys ay f mf) ab → * a < * b → odef (ys ay f mf) b is-max {a} {b} yca b≤x ab P a<b = {!!} - it01 : {c : Ordinal} → odef (ys ay f mf) c → Fc∨sup A (A∋fc y f mf (init ay)) f (& (ys ay f mf)) x c - it01 {c} cc = Fsup {!!} (Finit refl) record { fc∨sup = {!!} ; chain∋p = {!!} } {!!} initial : {i : Ordinal} → odef (ys ay f mf) i → * y ≤ * i initial {i} (init ai) = case1 refl initial .{f x} (fsuc x lt) = {!!} - chain-mono : {x y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) { a b : Ordinal } - → (zx : ZChain A y f a ) → (zy : ZChain A y f b) → a o≤ b → b o< osuc x → ZChain.chain zx ⊆' ZChain.chain zy -- -- create all ZChains under o< x @@ -443,23 +421,12 @@ px<x : px o< x px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc - fcs< : (A : HOD) {w y : Ordinal} (ay : odef A y) (c z : Ordinal) (x : Ordinal) - → z o< w → Fc∨sup A ay f c z x → Fc∨sup A ay f c w x - fcs< A ay c z x z<w (Finit x₁) = Finit x₁ - fcs< A {w} ay c z x z<w (Fsup {p} x₁ FC x₂ x₃) = Fsup x₁ (fcs< A ay c z p z<w FC) record { sup = FSup.sup x₂ ; chain∋p = FSup.chain∋p x₂ } - (x<ow x₃ z<w ) where - x<ow : x o< osuc z → z o< w → x o< osuc w - x<ow x<z z<w = ordtrans x<z (osucc z<w) - fcs< A {w} ay c z x z<w (Fc {p} x₁ FC x₂) = Fc x₁ (fcs< A ay c z p z<w FC) record { fc∨sup = FChain.fc∨sup x₂; chain∋p = FChain.chain∋p x₂} - zc4 : ZChain A y f x zc4 with ODC.∋-p O A (* x) ... | no noax = -- ¬ A ∋ p, just skip record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; initial = ZChain.initial zc0 - ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; chain∋sup = {!!} - ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc11 ; fc∨sup = zc12 } where -- no extention - zc12 : {c : Ordinal} → odef (ZChain.chain zc0) c → Fc∨sup A (ZChain.chain⊆A zc0 (ZChain.chain∋x zc0)) f (& (ZChain.chain zc0)) x c - zc12 {c} cc = fcs< A (ZChain.chain⊆A zc0 (ZChain.chain∋x zc0)) (& (ZChain.chain zc0)) px c px<x (ZChain.fc∨sup zc0 cc) + ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc11 } where -- no extention zc11 : {a b : Ordinal} → odef (ZChain.chain zc0) a → b o< osuc x → (ab : odef A b) → HasPrev A (ZChain.chain zc0) ab f ∨ IsSup A (ZChain.chain zc0) ab → * a < * b → odef (ZChain.chain zc0) b @@ -477,12 +444,11 @@ ... | case1 b=x = subst (λ k → odef chain0 k ) (trans (sym (HasPrev.x=fy pr )) (trans &iso (sym b=x)) ) ( ZChain.f-next zc0 (HasPrev.ay pr)) zc9 : ZChain A y f x zc9 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 -- no extention - ; chain∋sup = {!!} - ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc17 ; fc∨sup = {!!} } + ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc17 } ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) ax ) ... | case1 is-sup = -- x is a sup of zc0 - record { chain = schain ; chain⊆A = s⊆A ; f-total = scmp ; f-next = scnext ; chain∋sup = {!!} - ; initial = scinit ; f-immediate = simm ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = s-ismax ; fc∨sup = s-fc∨sup} where + record { chain = schain ; chain⊆A = s⊆A ; f-total = scmp ; f-next = scnext + ; initial = scinit ; f-immediate = simm ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = s-ismax } where sup0 : SUP A (ZChain.chain zc0) sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where x21 : {y : HOD} → ZChain.chain zc0 ∋ y → (y ≡ * x) ∨ (y < * x) @@ -505,9 +471,6 @@ s⊆A : schain ⊆' A s⊆A {x} (case1 zx) = ZChain.chain⊆A zc0 zx s⊆A {x} (case2 fx) = A∋fc (& sp) f mf fx - s-fc∨sup : {c : Ordinal} → odef schain c → Fc∨sup A (s⊆A (case1 (ZChain.chain∋x zc0))) f (& schain) x c - s-fc∨sup {c} (case1 cx) = {!!} - s-fc∨sup {c} (case2 fc) = {!!} cmp : {a b : HOD} (za : odef chain0 (& a)) (fb : FClosure A f (& sp) (& b)) → Tri (a < b) (a ≡ b) (b < a ) cmp {a} {b} za fb with SUP.x<sup sup0 za | s≤fc (& sp) f mf fb ... | case1 sp=a | case1 sp=b = tri≈ (λ lt → <-irr (case1 (sym eq)) lt ) eq (λ lt → <-irr (case1 eq) lt ) where @@ -602,8 +565,8 @@ ... | tri≈ ¬a b ¬c = init-chain ay f mf {!!} ... | tri> ¬a ¬b y<x = UnionZ where UnionZ : ZChain A y f x - UnionZ = record { chain = Uz ; chain⊆A = Uz⊆A ; f-total = u-total ; f-next = u-next ; chain∋sup = {!!} - ; initial = u-initial ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} ; fc∨sup = {!!} } where --- limit ordinal case + UnionZ = record { chain = Uz ; chain⊆A = Uz⊆A ; f-total = u-total ; f-next = u-next + ; initial = u-initial ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } where --- limit ordinal case record UZFChain (z : Ordinal) : Set n where -- Union of ZFChain from y which has maximality o< x field u : Ordinal @@ -622,8 +585,38 @@ u-initial {z} u = ZChain.initial ( uzc u ) (UZFChain.chain∋z u) u-chain∋x : odef Uz y u-chain∋x = record { u = y ; u<x = y<x ; chain∋z = ZChain.chain∋x (prev y y<x ay ) } + + ind-mono : {y : Ordinal } (ay : odef A y ) {a b : Ordinal } ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (zb : ZChain A y f b) → + (x : Ordinal) + → ((c : Ordinal) → c o< x → a o≤ b → b o≤ c → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i) + → a o≤ b → b o≤ x → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i + ind-mono {y} ay {a} {b} f mf zb x prev-mono a≤b b≤x za {i} zai with Oprev-p x + ... | yes op = mc00 where + open ZChain + px = Oprev.oprev op + zc0 : ZChain A y f (Oprev.oprev op) + zc0 = {!!} -- zfx (Oprev.oprev op) ay f mf + mc00 : odef (chain zb) i + mc00 with ODC.∋-p O A (* x) + ... | no noax = {!!} + ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc0) ax f ) + ... | case1 pr = {!!} + ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) ax ) + ... | case1 is-sup = {!!} -- x is a sup of zc0 + ... | case2 ¬x=sup = {!!} + ... | no ¬ox with trio< x y + ... | tri< a ¬b ¬c = {!!} + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b y<x = {!!} + + chain-mono : {x y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) { a b : Ordinal } + → (zx : ZChain A y f a ) → (zy : ZChain A y f b) → a o≤ b → b o< osuc x → ZChain.chain zx ⊆' ZChain.chain zy + chain-mono {x} {y} ay f mf {a} {b} za zb a≤b b≤x = TransFinite {λ x → + a o≤ b → b o≤ x → (za : ZChain A y f a) → {i : Ordinal } → odef (ZChain.chain za) i → odef (ZChain.chain zb) i } + (ind-mono ay f mf zb) x a≤b b≤x za + u-mono : ( a b : Ordinal ) → b o< osuc x → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za ⊆' ZChain.chain zb - u-mono a b b≤x a≤b za zb {i} zai = chain-mono ay f mf za zb a≤b b≤x zai + u-mono a b b≤x a≤b za zb {i} zai = {!!} -- chain-mono ay f mf za zb a≤b b≤x zai u-total : IsTotalOrderSet Uz u-total {x} {y} ux uy with trio< (UZFChain.u ux) (UZFChain.u uy) ... | tri< a ¬b ¬c = ZChain.f-total (uzc uy) (u-mono (UZFChain.u ux) (UZFChain.u uy) @@ -633,36 +626,6 @@ ... | tri> ¬a ¬b c = ZChain.f-total (uzc ux) (UZFChain.chain∋z ux) (u-mono (UZFChain.u uy) (UZFChain.u ux) (ordtrans (UZFChain.u<x ux) <-osuc) (ordtrans c <-osuc) (uzc uy) (uzc ux) (UZFChain.chain∋z uy)) - zfx : (x : Ordinal ) {y : Ordinal } (ay : odef A y ) ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → ZChain A y f x - zfx x ay f mf = TransFinite {λ z → {y : Ordinal } → (ay : odef A y ) → ZChain A y f z } (ind f mf) x ay - - ind-mono : (x : Ordinal ) {y : Ordinal } (ay : odef A y ) {b : Ordinal } ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (zb : ZChain A y f b) → - (a : Ordinal) - → ((c : Ordinal) → c o< a → c o≤ b → b o≤ x → (zc : ZChain A y f c) {i : Ordinal} → odef (ZChain.chain zc) i → odef (ZChain.chain zb) i) - → a o≤ b → b o≤ x → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i - ind-mono x {y} ay {b} f mf zb a prev a≤b b≤x za {i} zai with Oprev-p a - ... | yes op = mc00 where - open ZChain - px = Oprev.oprev op - zc0 : ZChain A y f (Oprev.oprev op) - zc0 = {!!} -- zfx (Oprev.oprev op) ay f mf - mc00 : odef (chain zb) i - mc00 with ODC.∋-p O A (* a) - ... | no noax = {!!} - ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc0) ax f ) - ... | case1 pr = {!!} - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) ax ) - ... | case1 is-sup = {!!} -- x is a sup of zc0 - ... | case2 ¬x=sup = {!!} - ... | no ¬ox with trio< x y - ... | tri< a ¬b ¬c = {!!} - ... | tri≈ ¬a b ¬c = {!!} - ... | tri> ¬a ¬b y<x = {!!} - - chain-mono {x} {y} ay f mf {a} {b} za zb a≤b b≤x = TransFinite {λ a → - a o≤ b → b o≤ x → (za : ZChain A y f a) → {i : Ordinal } → odef (ZChain.chain za) i → odef (ZChain.chain zb) i } - (ind-mono x ay f mf zb) a a≤b b≤x za - zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x = zorn02 } where