changeset 1466:e8c166541c86

fix for safe
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 18 Jun 2024 18:46:53 +0900
parents bd2b003e25ef
children ca5bfb401ada
files Todo src/BAlgebra.agda src/LEMC.agda
diffstat 3 files changed, 85 insertions(+), 98 deletions(-) [+]
line wrap: on
line diff
--- a/Todo	Fri Jan 05 13:50:21 2024 +0900
+++ b/Todo	Tue Jun 18 18:46:53 2024 +0900
@@ -1,3 +1,8 @@
+Tue Jun 18 18:43:10 JST 2024
+
+    make safe in all case
+    stop using functional extensionality
+
 Sun Jul  9 09:42:20 JST 2023
 
     Assume countable dense OD in Ordinal as L
--- a/src/BAlgebra.agda	Fri Jan 05 13:50:21 2024 +0900
+++ b/src/BAlgebra.agda	Tue Jun 18 18:46:53 2024 +0900
@@ -3,35 +3,24 @@
 open import Ordinals
 import HODBase
 import OD
+open import Relation.Nullary
 module BAlgebra {n : Level } (O : Ordinals {n} ) (HODAxiom : HODBase.ODAxiom O)  (ho< : OD.ODAxiom-ho< O HODAxiom )
-       (AC : OD.AxiomOfChoice O HODAxiom )
-   where
+   (L : HODBase.HOD O) (∋-p : (P : HODBase.HOD O) → OD._⊆_ O HODAxiom P L → (x : HODBase.HOD O) → Dec ( OD._∈_ O HODAxiom x P )) where
 
--- open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ )
 open import  Relation.Binary.PropositionalEquality hiding ( [_] )
 open import Data.Empty
-open import Data.Unit
-open import Relation.Nullary
-open import Relation.Binary  hiding (_⇔_)
-open import Relation.Binary.Core hiding (_⇔_)
-import Relation.Binary.Reasoning.Setoid as EqR
 
-open import logic
 import OrdUtil
-open import nat
 
 open Ordinals.Ordinals  O
 open Ordinals.IsOrdinals isOrdinal
--- open Ordinals.IsNext isNext
+import ODUtil
+
+open import logic
+open import nat
+
 open OrdUtil O
-import ODUtil
-open ODUtil O HODAxiom ho<
-import ODC
-
--- Ordinal Definable Set
-
-open HODBase.HOD
-open HODBase.OD
+open ODUtil O HODAxiom  ho<
 
 open _∧_
 open _∨_
@@ -39,56 +28,52 @@
 
 open  HODBase._==_
 
-open HODBase.ODAxiom HODAxiom
+open HODBase.ODAxiom HODAxiom  
 open OD O HODAxiom
-open AxiomOfChoice AC
 
-open _∧_
-open _∨_
-open Bool
 
-L\L=0 : { L  : HOD  } → (L \ L) =h= od∅
-L\L=0 {L} = record { eq→ = lem0 ; eq← =  lem1 }  where
+L\L=0 :  (L \ L) =h= od∅
+L\L=0 = record { eq→ = lem0 ; eq← =  lem1 }  where
     lem0 : {x : Ordinal} → odef (L \ L) x → odef od∅ x
     lem0 {x} ⟪ lx , ¬lx ⟫ = ⊥-elim (¬lx lx)
     lem1 : {x : Ordinal} → odef  od∅ x → odef (L \ L) x
     lem1 {x} lt = ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt ))
 
-L\Lx=x : { L x : HOD  } → x ⊆ L   → (L \ ( L \ x )) =h= x
-L\Lx=x {L} {x} x⊆L = record { eq→ = lem03 ; eq← = lem04 }  where
+L\Lx=x : {x : HOD} →  x ⊆ L   → (L \ ( L \ x )) =h= x
+L\Lx=x {x} x⊆L = record { eq→ = lem03 ; eq← = lem04 }  where
     lem03 :  {z : Ordinal} → odef (L \ (L \ x)) z → odef x z
-    lem03 {z} ⟪ Lz , Lxz ⟫ with ODC.∋-p O HODAxiom AC  x (* z)
+    lem03 {z} ⟪ Lz , Lxz ⟫ with ∋-p x x⊆L (* z)
     ... | yes y = subst (λ k → odef x k ) &iso y
     ... | no n = ⊥-elim ( Lxz ⟪ Lz , ( subst (λ k → ¬ odef x k ) &iso n ) ⟫ )
     lem04 :  {z : Ordinal} → odef x z → odef (L \ (L \ x)) z
-    lem04 {z} xz with ODC.∋-p O HODAxiom AC L (* z)
+    lem04 {z} xz with ∋-p L  (λ x → x) (* z)
     ... | yes y = ⟪ subst (λ k → odef L k ) &iso y  , ( λ p → proj2 p xz )  ⟫
     ... | no  n = ⊥-elim ( n (subst (λ k → odef L k ) (sym &iso) ( x⊆L xz) ))
 
-L\0=L : { L  : HOD  } → (L \ od∅) =h= L
-L\0=L {L} = record { eq→ = lem05 ; eq← = lem06 }  where
+L\0=L :  (L \ od∅) =h= L
+L\0=L  = record { eq→ = lem05 ; eq← = lem06 }  where
     lem05 : {x : Ordinal} → odef (L \ od∅) x → odef L x
     lem05 {x} ⟪ Lx , _ ⟫ = Lx
     lem06 : {x : Ordinal} → odef L x → odef (L \ od∅) x
     lem06 {x} Lx = ⟪ Lx , (λ lt → ¬x<0 lt)  ⟫
 
-∨L\X : { L X : HOD } → {x : Ordinal } → odef L x → odef X x ∨ odef (L \ X) x
-∨L\X {L} {X} {x} Lx with ODC.∋-p O HODAxiom AC X (* x)
-... | yes y = case1 ( subst (λ k → odef X k ) &iso y  )
-... | no  n = case2 ⟪ Lx , subst (λ k → ¬ odef X k) &iso n ⟫
+∨L\X : { X : HOD } → {x : Ordinal } → odef L x → odef X x ∨ odef (L \ X) x
+∨L\X {X} {x} Lx with ∋-p (X ∩ L) (λ lt → proj2 lt ) (* x)
+... | yes y = case1 ( subst (λ k → odef X k ) &iso (proj1 y)  )
+... | no  n = case2 ⟪ Lx , subst (λ k → ¬ odef X k) &iso (λ lt → ⊥-elim ( n ⟪ lt , subst (λ k → odef L k) (sym &iso) Lx ⟫ ) )  ⟫
 
-\-⊆ : { P A B : HOD } →  A ⊆ P → ( A ⊆ B → ( P \ B ) ⊆ ( P \ A )) ∧ (( P \ B ) ⊆ ( P \ A ) → A ⊆ B )
-\-⊆ {P} {A} {B} A⊆P = ⟪ ( λ a<b {x} pbx → ⟪ proj1 pbx  , (λ ax → proj2 pbx (a<b ax))   ⟫ )  , lem07 ⟫ where
-    lem07 : (P \ B) ⊆ (P \ A) → A ⊆ B
-    lem07 pba {x} ax with ODC.p∨¬p O HODAxiom AC (odef B x)
-    ... | case1 bx = bx
-    ... | case2 ¬bx = ⊥-elim ( proj2 ( pba ⟪ A⊆P ax  , ¬bx ⟫ ) ax )
+\-⊆ : { A B : HOD } →  A ⊆ L → ( A ⊆ B → ( L \ B ) ⊆ ( L \ A )) ∧ (( L \ B ) ⊆ ( L \ A ) → A ⊆ B )
+\-⊆ {A} {B} A⊆L = ⟪ ( λ a<b {x} pbx → ⟪ proj1 pbx  , (λ ax → proj2 pbx (a<b ax))   ⟫ )  , lem07 ⟫ where
+    lem07 : (L \ B) ⊆ (L \ A) → A ⊆ B
+    lem07 pba {x} ax with ∋-p (B ∩ L) proj2 (* x)
+    ... | yes bx = subst (λ k → odef B k ) &iso (proj1 bx)
+    ... | no ¬bx = ⊥-elim ( proj2 ( pba ⟪ A⊆L ax  , (λ bx → ¬bx ⟪ d→∋ B bx , subst (λ k → odef L k) (sym &iso) ( A⊆L ax)  ⟫) ⟫ ) ax )
 
-RC\ : {L : HOD} → RCod (Power (Union L)) (λ z → L \ z )
-RC\ {L} = record { ≤COD = λ {x} lt z xz → lemm {x} lt z xz ; ψ-eq = λ {x} {y} → wdf {x} {y}  } where
+RC\ :  RCod (Power (Union L)) (λ z → L \ z )
+RC\ = record { ≤COD = λ {x} lt z xz → lemm {x} lt z xz ; ψ-eq = λ {x} {y} → wdf {x} {y}  } where
     lemm : {x : HOD} → (L \ x) ⊆ Power (Union L )
     lemm {x} ⟪ Ly , nxy ⟫ z xz = record { owner = _ ; ao = Ly ; ox = xz }
-    wdf : {x y : HOD} → od x == od y → (L \ x) =h= (L \ y)
+    wdf : {x y : HOD} → x =h= y → (L \ x) =h= (L \ y)
     wdf {x} {y} x=y = record { eq→ = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq← x=y yp) ) ⟫
                              ; eq← = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq→ x=y yp) ) ⟫  }
 
@@ -97,10 +82,10 @@
 [a-b]∩b=0 {A} {B} = record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt ))
      ; eq→ =  λ {x} lt → ⊥-elim (proj2 (proj1 lt ) (proj2 lt)) }
 
-U-F=∅→F⊆U : {F U : HOD} →  ((x : Ordinal) →  ¬ ( odef F x ∧ ( ¬ odef U x ))) → F ⊆ U
-U-F=∅→F⊆U {F} {U} not = gt02  where
+U-F=∅→F⊆U : {F U : HOD} → U ⊆ L  →  ((x : Ordinal) →  ¬ ( odef F x ∧ ( ¬ odef U x ))) → F ⊆ U
+U-F=∅→F⊆U {F} {U} U⊆L not = gt02  where
     gt02 : { x : Ordinal } → odef F x → odef U x
-    gt02 {x} fx with ODC.∋-p O HODAxiom AC U (* x)
+    gt02 {x} fx with ∋-p U  U⊆L (* x)
     ... | yes y = subst (λ k → odef U k ) &iso y
     ... | no  n = ⊥-elim ( not x ⟪ fx , subst (λ k → ¬ odef U k ) &iso n ⟫ )
 
@@ -153,6 +138,12 @@
     lemma2 {x} lt | case1 cp | _ = case1 cp
     lemma2 {x} lt | _ | case1 cp = case1 cp
     lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫
+record PowerP (P : HOD) : Set (suc n) where
+    constructor ⟦_,_⟧
+    field
+       hod : HOD
+       x⊆P : hod ⊆ P
+
 
 record IsBooleanAlgebra {n m : Level} ( L : Set n)
        ( _≈_ : L → L → Set m )
@@ -185,16 +176,10 @@
        _x_ : L → L → L
        isBooleanAlgebra : IsBooleanAlgebra L _≈_ b1 b0 -_ _+_ _x_
 
-record PowerP (P : HOD) : Set (suc n) where
-    constructor ⟦_,_⟧
-    field
-       hod : HOD
-       x⊆P : hod ⊆ P
 
-open PowerP
-
-HODBA : (P : HOD) → BooleanAlgebra {suc n} {n} (PowerP P)
-HODBA P = record { _≈_ = λ x y → hod x =h= hod y ; b1 = ⟦ P , (λ x → x) ⟧   ; b0 = ⟦ od∅ , (λ x →  ⊥-elim (¬x<0 x)) ⟧
+HODBA : (P : HODBase.HOD O)  (∋-p : (Q : HODBase.HOD O) → OD._⊆_ O HODAxiom  Q P → ( x : HODBase.HOD O ) → Dec ( OD._∈_ O HODAxiom x Q )) 
+     → BooleanAlgebra (PowerP P) 
+HODBA P ∋-p = record { _≈_ = λ x y → hod x =h= hod y ; b1 = ⟦ P , (λ x → x) ⟧   ; b0 = ⟦ od∅ , (λ x →  ⊥-elim (¬x<0 x)) ⟧
   ; -_ = λ x → ⟦  P \ hod x , proj1 ⟧
   ; _+_ = λ x y → ⟦ hod x ∪ hod y , ba00 x y ⟧ ; _x_ = λ x y → ⟦ hod x ∩ hod y , (λ lt → x⊆P x (proj1 lt))  ⟧
    ; isBooleanAlgebra = record {
@@ -213,6 +198,7 @@
      ; a+-a1 = λ {a} →  record { eq→ = ba06 a ; eq← = ba07 a }
      ; ax-a0 =  λ {a} →  record { eq→ = ba08 a ; eq← = λ lt → ⊥-elim (¬x<0 lt) }
        } } where
+     open PowerP
      ba00 : (x y : PowerP P ) →  (hod x ∪ hod y) ⊆ P
      ba00 x y (case1 px) = x⊆P x px
      ba00 x y (case2 py) = x⊆P y py
@@ -227,7 +213,7 @@
      ba02 a b c {x} (case1 (case2 bx)) = case2 (case1 bx)
      ba02 a b c {x} (case2 cx) = case2 (case2 cx)
      ba03 : (a b : PowerP P) → {x : Ordinal} →
-            odef (hod a) x ∨ odef (hod a ∩ hod b) x → def (od (hod a)) x
+            odef (hod a) x ∨ odef (hod a ∩ hod b) x → odef (hod a) x
      ba03 a b (case1 ax) = ax
      ba03 a b (case2 ab) = proj1 ab
      ba04 : (a : HOD) →  {x : Ordinal} → odef a x ∨ odef od∅ x → odef a x
@@ -236,13 +222,13 @@
      ba05 : {a b : HOD} {x : Ordinal} →  odef a x ∨ odef b x → odef b x ∨ odef a x
      ba05 (case1 x) = case2 x
      ba05 (case2 x) = case1 x
-     ba06 : (a : PowerP P ) → { x : Ordinal} → odef (hod a) x ∨ odef (P \ hod a) x → def (od P) x
+     ba06 : (a : PowerP P ) → { x : Ordinal} → odef (hod a) x ∨ odef (P \ hod a) x → odef P x
      ba06 a {x} (case1 ax) = x⊆P a ax
      ba06 a {x} (case2 nax) = proj1 nax
-     ba07 : (a : PowerP P ) → { x : Ordinal} → def (od P) x → odef (hod a) x ∨ odef (P \ hod a) x
-     ba07 a {x} px with ODC.∋-p O HODAxiom AC (hod a) (* x)
+     ba07 : (a : PowerP P ) → { x : Ordinal} → odef P x → odef (hod a) x ∨ odef (P \ hod a) x
+     ba07 a {x} px with ∋-p (hod a) (x⊆P a) (* x)
      ... | yes y = case1 (subst (λ k → odef (hod a) k) &iso y)
      ... | no n = case2 ⟪ px , subst (λ k → ¬ odef (hod a) k) &iso n ⟫
-     ba08 : (a : PowerP P) → {x : Ordinal} → def (od (hod a ∩ (P \ hod a))) x → def (od od∅) x
+     ba08 : (a : PowerP P) → {x : Ordinal} → odef (hod a ∩ (P \ hod a)) x → odef od∅ x
      ba08 a {x} ⟪ ax , ⟪ px , nax ⟫ ⟫ = ⊥-elim ( nax ax )
 
--- a/src/LEMC.agda	Fri Jan 05 13:50:21 2024 +0900
+++ b/src/LEMC.agda	Tue Jun 18 18:46:53 2024 +0900
@@ -1,38 +1,41 @@
+{-# OPTIONS --cubical-compatible --safe #-}
 open import Level
 open import Ordinals
 open import logic
 open import Relation.Nullary
-module LEMC {n : Level } (O : Ordinals {n} )  where
-
-open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
-open import  Relation.Binary.PropositionalEquality
-open import Data.Nat.Properties 
-open import Data.Empty
-open import Relation.Binary
-open import Relation.Binary.Core
 
-open import nat
+open import Level
+open import Ordinals
+import HODBase
 import OD
+open import Relation.Nullary
+module LEMC {n : Level } (O : Ordinals {n} ) (HODAxiom : HODBase.ODAxiom O)  (ho< : OD.ODAxiom-ho< O HODAxiom )( p∨¬p : ( p : Set n) → p ∨ ( ¬ p ) ) where
 
-open inOrdinal O
-open OD O
-open OD.OD
-open OD._==_
-open ODAxiom odAxiom
+open import  Relation.Binary.PropositionalEquality hiding ( [_] )
+open import Data.Empty
+
 import OrdUtil
-import ODUtil
+
 open Ordinals.Ordinals  O
 open Ordinals.IsOrdinals isOrdinal
--- open Ordinals.IsNext isNext
+import ODUtil
+
+open import logic
+open import nat
+
 open OrdUtil O
-open ODUtil O
+open ODUtil O HODAxiom  ho<
 
-open import zfc
+open _∧_
+open _∨_
+open Bool
 
-open HOD
+open  HODBase._==_
 
-postulate 
-   p∨¬p : ( p : Set n) → p ∨ ( ¬ p ) 
+open HODBase.ODAxiom HODAxiom  
+open OD O HODAxiom
+
+open HODBase.HOD
 
 decp : ( p : Set n ) → Dec p   -- assuming axiom of choice    
 decp  p with p∨¬p p
@@ -49,11 +52,6 @@
 ... | yes p = p
 ... | no ¬p = ⊥-elim ( notnot ¬p )
 
--- by-contradiction : {A : Set n} {B : A → Set n}  → ¬ ( (a : A ) → ¬ B a ) → A    
--- by-contradiction {A} {B} not with p∨¬p A         
--- ... | case2 ¬a  = ⊥-elim (not (λ a → ⊥-elim (¬a a  )))          
--- ... | case1 a = a            
-
 power→⊆ :  ( A t : HOD) → Power A ∋ t → t ⊆ A
 power→⊆ A t  PA∋t t∋x = subst (λ k → odef A k ) &iso ( t1 (subst (λ k → odef t k ) (sym &iso) t∋x))  where
    t1 : {x : HOD }  → t ∋ x → A ∋ x
@@ -68,14 +66,13 @@
 
 open choiced
 
--- ∋→d : ( a : HOD  ) { x : HOD } → * (& a) ∋ x → X ∋ * (a-choice (choice-func X not))
--- ∋→d a lt = subst₂ (λ j k → odef j k) *iso (sym &iso) lt
-
 oo∋ : { a : HOD} {  x : Ordinal } → odef (* (& a)) x → a ∋ * x
-oo∋ lt = subst₂ (λ j k → odef j k) *iso (sym &iso) lt
+oo∋ {a} {x} lt = eq→   *iso (subst (λ k → odef (* (& a)) k ) (sym &iso) lt )
 
 ∋oo : { a : HOD} {  x : Ordinal } → a ∋ * x → odef (* (& a)) x 
-∋oo lt = subst₂ (λ j k → odef j k ) (sym *iso) &iso lt 
+∋oo {a} {x} lt = eq←   *iso (subst (λ k → odef a k ) &iso lt )
+
+open import zfc
 
 OD→ZFC : ZFC
 OD→ZFC   = record { 
@@ -83,12 +80,11 @@
     ; _∋_ = _∋_ 
     ; _≈_ = _=h=_ 
     ; ∅  = od∅
-    ; Select = Select
     ; isZFC = isZFC
  } where
     -- infixr  200 _∈_
     -- infixr  230 _∩_ _∪_
-    isZFC : IsZFC (HOD )  _∋_  _=h=_ od∅ Select
+    isZFC : IsZFC (HOD )  _∋_  _=h=_ od∅ 
     isZFC = record {
        choice-func = λ A {X} not A∋X → * (a-choice (choice-func X not) );
        choice = λ A {X} A∋X not → oo∋ (is-in (choice-func X not))
@@ -101,7 +97,7 @@
                  ψ : ( ox : Ordinal ) → Set n
                  ψ ox = (( x : Ordinal ) → x o< ox  → ( ¬ odef X x )) ∨ choiced (& X)
                  lemma-ord : ( ox : Ordinal  ) → ψ ox
-                 lemma-ord  ox = TransFinite0 {ψ} induction ox where
+                 lemma-ord  ox = inOrdinal.TransFinite0 O {ψ} induction ox where
                     ∀-imply-or :  {A : Ordinal  → Set n } {B : Set n }
                         → ((x : Ordinal ) → A x ∨ B) →  ((x : Ordinal ) → A x) ∨ B
                     ∀-imply-or  {A} {B} ∀AB with p∨¬p ((x : Ordinal ) → A x) -- LEM
@@ -122,7 +118,7 @@
                          lemma :  ((y : Ordinal) → y o< x → odef X y → ⊥) ∨ choiced (& X)
                          lemma = ∀-imply-or lemma1
                  odef→o< :  {X : HOD } → {x : Ordinal } → odef X x → x o< & X 
-                 odef→o<  {X} {x} lt = o<-subst  {_} {_} {x} {& X} ( c<→o< ( subst₂ (λ j k → odef j k )  (sym *iso) (sym &iso)  lt )) &iso &iso
+                 odef→o<  {X} {x} lt = o<-subst  {_} {_} {x} {& X} ( c<→o< (eq← *iso (subst (λ k → odef X k) (sym &iso) lt ))) &iso &iso
                  have_to_find : choiced (& X)
                  have_to_find = dont-or  (lemma-ord (& X )) ¬¬X∋x where
                      ¬¬X∋x : ¬ ((x : Ordinal) → x o< (& X) → odef X x → ⊥)
@@ -154,7 +150,7 @@
          ... | case2 NP =  min2 where
               p : HOD
               p  = record { od = record { def = λ y1 → odef x  y1 ∧ odef u y1 } ; odmax = omin (odmax x) (odmax u) ; <odmax = lemma } where
-                 lemma : {y : Ordinal} → OD.def (od x) y ∧ OD.def (od u) y → y o< omin (odmax x) (odmax u)
+                 lemma : {y : Ordinal} → odef x y ∧ odef u y → y o< omin (odmax x) (odmax u)
                  lemma {y} lt = min1 (<odmax x (proj1 lt)) (<odmax u (proj2 lt))
               np : ¬ (p =h= od∅)
               np p∅ =  NP (λ y p∋y → ∅< {p} {_} (d→∋ p p∋y) p∅ )