Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 153:f1801c4735d3
union continue ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 10 Jul 2019 06:52:00 +0900 |
parents | 996a67042f50 |
children | e51c23eb3803 |
files | HOD.agda |
diffstat | 1 files changed, 11 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Tue Jul 09 17:46:45 2019 +0900 +++ b/HOD.agda Wed Jul 10 06:52:00 2019 +0900 @@ -318,6 +318,17 @@ union-d X = record { def = λ y → def X (osuc y) } union-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) ) + ord-union→ : (x : Ordinal) (z u : OD) → (Ord x ∋ u) ∧ (u ∋ z) → Union (Ord x) ∋ z + ord-union→ x z u plt with trio< ( od→ord u ) ( osuc ( od→ord z )) + ord-union→ x z u plt | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 plt)) + ord-union→ x z u plt | tri< a ¬b ¬c | () + ord-union→ x z u plt | tri≈ ¬a b ¬c = subst ( λ k → k o< x ) b (proj1 plt) + ord-union→ x z u plt | tri> ¬a ¬b c = otrans (proj1 plt) c + ord-union← : (x : Ordinal) (z : OD) (X∋z : Union (Ord x) ∋ z) → (Ord x ∋ union-u {Ord x} {z} X∋z ) ∧ (union-u {Ord x} {z} X∋z ∋ z ) + ord-union← x z X∋z = record { proj1 = lemma ; proj2 = <-osuc } where + lemma : Ord x ∋ union-u {Ord x} {z} X∋z + lemma = def-subst {suc n} {_} {_} {Ord x} {_} X∋z refl ? + union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx))