Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 859:f72b35ab0ef9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 08 Sep 2022 09:16:51 +0900 |
parents | bba4ce6d2766 |
children | 105f8d6c51fb |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Sep 07 23:17:29 2022 +0900 +++ b/src/zorn.agda Thu Sep 08 09:16:51 2022 +0900 @@ -576,20 +576,19 @@ * a < * b → odef (UnionCF A f mf ay (ZChain.supf zc) x) b is-max {a} {b} ua b<x ab (case1 has-prev) a<b = is-max-hp x {a} {b} ua b<x ab has-prev a<b is-max {a} {b} ua b<x ab (case2 is-sup) a<b - = ⟪ ab , ch-is-sup b (o<→≤ b<x) m06 (subst (λ k → FClosure A f k b) m05 (init ab refl)) ⟫ where + = ⟪ ab , ch-is-sup b (o<→≤ b<x) m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where b<A : b o< & A b<A = z09 ab - m05 : b ≡ ZChain.supf zc b - m05 = sym ( ZChain.sup=u zc ab (o<→≤ (z09 ab) ) - record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) uz ) } ) + m05 : ZChain.supf zc b ≡ b + m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) + record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) uz ) } m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b m08 {z} fcz = ZChain.fcy<sup zc b<A fcz m09 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b → FClosure A f (ZChain.supf zc s) z1 → z1 <= ZChain.supf zc b m09 {s} {z} s<b fcz = ZChain.order zc b<A s<b fcz m06 : ChainP A f mf ay (ZChain.supf zc) b - m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = ZChain.sup=u zc ab (o<→≤ b<A ) - record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) uz ) } } + m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = m05 } ... | no lim = record { is-max = is-max } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → @@ -599,7 +598,7 @@ is-max {a} {b} ua b<x ab (case2 is-sup) a<b with IsSup.x<sup is-sup (init-uchain A f mf ay ) ... | case1 b=y = ⟪ subst (λ k → odef A k ) b=y ay , ch-init (subst (λ k → FClosure A f y k ) b=y (init ay refl )) ⟫ ... | case2 y<b = chain-mono1 (osucc b<x) - ⟪ ab , ch-is-sup b (ordtrans o≤-refl <-osuc ) m06 (subst (λ k → FClosure A f k b) m05 (init ab refl)) ⟫ where + ⟪ ab , ch-is-sup b (ordtrans o≤-refl <-osuc ) m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where m09 : b o< & A m09 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab)) m07 : {z : Ordinal} → FClosure A f y z → z <= ZChain.supf zc b @@ -607,12 +606,11 @@ m08 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b → FClosure A f (ZChain.supf zc s) z1 → z1 <= ZChain.supf zc b m08 {s} {z1} s<b fc = ZChain.order zc m09 s<b fc - m05 : b ≡ ZChain.supf zc b - m05 = sym (ZChain.sup=u zc ab (o<→≤ m09) - record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) lt )} ) -- ZChain on x + m05 : ZChain.supf zc b ≡ b + m05 = ZChain.sup=u zc ab (o<→≤ m09) + record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) lt )} -- ZChain on x m06 : ChainP A f mf ay (ZChain.supf zc) b - m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = ZChain.sup=u zc ab (o<→≤ m09) - record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) lt )} } + m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = m05 } --- --- the maximum chain has fix point of any ≤-monotonic function @@ -838,9 +836,6 @@ zc13 : odef pchain z zc13 = subst (λ k → odef pchain k) (trans (sym (HasPrev.x=fy hp)) zc14) ( ZChain.f-next zc (HasPrev.ay hp) ) zc20 {.(f w)} (fsuc w fc) = ZChain.f-next zc (zc20 fc) - - -- zc11 (case2 hp) {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup (init asu su=z ) ⟫ | case1 eq = zc13 where - --zc11 (case2 hp) {.(f w)} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup (fsuc w fc) ⟫ | case1 eq = ? record STMP {z : Ordinal} (z≤x : z o≤ x ) : Set (Level.suc n) where field tsup : SUP A (UnionCF A f mf ay supf0 z) @@ -870,13 +865,14 @@ zc30 with osuc-≡< b≤x ... | case1 eq = sym (eq) ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) + zcsup : xSUP (UnionCF A f mf ay supf0 px) x + zcsup with zc30 + ... | refl = record { ax = ab ; is-sup = record { x<sup = λ {w} lt → + IsSup.x<sup is-sup (subst (λ k → odef k w) pchain0=1 lt) } } zc31 : ( (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A pchain x f) → supf0 b ≡ b - zc31 (case1 ¬sp=x) = ⊥-elim (¬sp=x zcsup ) where - zcsup : xSUP (UnionCF A f mf ay supf0 px) x - zcsup with zc30 - ... | refl = record { ax = ab ; is-sup = record { x<sup = λ {w} lt → - IsSup.x<sup is-sup (subst (λ k → odef k w) pchain0=1 lt) } } + zc31 (case1 ¬sp=x) = ⊥-elim (¬sp=x zcsup ) zc31 (case2 hasPrev ) = ? + -- f a ≡ x , a ≡ x ∨ ( a < x ) -- supf0 (f a) ≡ f a/j zc04 : {b : Ordinal} → b o≤ x → (b o≤ px ) ∨ (b ≡ x ) zc04 {b} b≤x with trio< b px