Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 739:f92c675c3ef0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 19 Jul 2022 18:35:38 +0900 |
parents | ffd3bb1a43fe |
children | 11f46927e3f7 |
files | src/zorn.agda |
diffstat | 1 files changed, 9 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jul 19 17:57:26 2022 +0900 +++ b/src/zorn.agda Tue Jul 19 18:35:38 2022 +0900 @@ -265,6 +265,7 @@ record ChainP (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal) (u z : Ordinal) : Set n where field fcy<sup : {z : Ordinal } → FClosure A f y z → z << supf u + csupz : FClosure A f (supf u) z order : {sup1 z1 : Ordinal} → (lt : sup1 o< u ) → FClosure A f (supf sup1 ) z1 → z1 << supf u -- u>0 : o∅ o< u -- ¬ ch-init @@ -274,7 +275,6 @@ -- au : odef A u -- ¬u=fx : {x : Ordinal} → ¬ ( u ≡ f x ) -- asup : (x : Ordinal) → odef A (supf x) - -- csupz : FClosure A f (supf u) z data Chain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal) : Ordinal → Ordinal → Set n where @@ -493,7 +493,7 @@ m04 : odef (UnionCF A f mf ay (ZChain.supf zc) px) b m04 = ZChain1.is-max (prev px px<x) m03 b<px ab (case2 record {x<sup = λ {z} lt → IsSup.x<sup is-sup (chain-mono2 x ( o<→≤ (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc )) o≤-refl lt) } ) a<b - ... | tri≈ ¬a b=px ¬c = {!!} -- b = px case + ... | tri≈ ¬a b=px ¬c = ? -- b = px case ... | no lim = record { is-max = is-max ; chain-mono2 = chain-mono2 x } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → @@ -503,8 +503,10 @@ is-max {a} {b} ua b<x ab (case2 is-sup) a<b = chain-mono2 x ? o≤-refl m04 where m05 : b ≡ ZChain.supf zc b m05 = sym (ZChain.sup=u ? ab is-sup) -- ZChain on x + m06 : ChainP A f mf ay (ZChain.supf zc) b b + m06 = record { fcy<sup = ? ; csupz = subst (λ k → FClosure A f k b ) m05 (init ab) ; order = ? } m04 : odef (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) b - m04 = ⟪ ab , record { u = b ; u<x = case1 <-osuc ; uchain = ch-is-sup ? (subst (λ k → FClosure A f k b) m05 (init ab)) } ⟫ + m04 = ⟪ ab , record { u = b ; u<x = case1 <-osuc ; uchain = ch-is-sup m06 (subst (λ k → FClosure A f k b) m05 (init ab)) } ⟫ --- --- the maximum chain has fix point of any ≤-monotonic function @@ -646,16 +648,6 @@ ; initial = pinit ; chain∋init = pcy ; sup=u = ? ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } - chain-mono : UnionCF A f mf ay (ZChain.supf zc) (Oprev.oprev op ) ⊆' pchain - chain-mono {a} za = ⟪ proj1 za , record { u = UChain.u (proj2 za) ; u<x = zc11 ; uchain = UChain.uchain (proj2 za) } ⟫ where - zc11 : (UChain.u (proj2 za) o< x) ∨ (UChain.u (proj2 za) ≡ o∅) - zc11 with UChain.u<x (proj2 za) - ... | case1 z<x = case1 (ordtrans z<x px<x ) - ... | case2 z=0 = case2 z=0 - - chain-≡ : pchain ⊆' UnionCF A f mf ay (ZChain.supf zc) (Oprev.oprev op ) - → pchain ≡ UnionCF A f mf ay (ZChain.supf zc) (Oprev.oprev op ) - chain-≡ lt = ==→o≡ record { eq→ = lt ; eq← = chain-mono } chain-x : ( {z : Ordinal} → (az : odef pchain z) → ¬ ( UChain.u (proj2 az) ≡ px )) → pchain ⊆' UnionCF A f mf ay (ZChain.supf zc) px chain-x ne {z} ⟪ az , record { u = u ; u<x = case2 u=y ; uchain = uc } ⟫ = @@ -678,7 +670,7 @@ ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) apx ) ... | case1 is-sup = -- x is a sup of zc record { supf = {!!} ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal - ; initial = pinit ; chain∋init = pcy } + ; initial = pinit ; chain∋init = pcy ; sup=u = ? } ... | case2 ¬x=sup = no-extension -- px is not f y' nor sup of former ZChain from y -- no extention ... | no lim = zc5 where @@ -727,7 +719,7 @@ no-extension : ZChain A f mf ay x no-extension = record { initial = pinit ; chain∋init = pcy ; supf = psupf0 - ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } + ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal ; sup=u = ?} usup : SUP A pchain usup = supP pchain (λ lt → proj1 lt) ptotal @@ -745,8 +737,8 @@ -- we have to check adding x preserve is-max ZChain A y f mf x ... | case1 pr = no-extension ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A pchain ax ) - ... | case1 is-sup = record { initial = {!!} ; chain∋init = {!!} ; supf = psupf1 - ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} } where -- x is a sup of (zc ?) + ... | case1 is-sup = record { initial = {!!} ; chain∋init = {!!} ; supf = psupf1 ; sup=u = ? + ; chain⊆A = {!!} ; f-next = {!!} ; f-total = ? } where -- x is a sup of (zc ?) psupf1 : Ordinal → Ordinal psupf1 z with trio< z x ... | tri< a ¬b ¬c = ZChain.supf (pzc z a) z