Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 616:fae0fa6184d5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Jun 2022 00:07:25 +0900 |
parents | 9ac3789bf058 |
children | 50999e72f19f |
files | src/zorn.agda |
diffstat | 1 files changed, 10 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Jun 17 23:19:19 2022 +0900 +++ b/src/zorn.agda Sat Jun 18 00:07:25 2022 +0900 @@ -420,7 +420,7 @@ initial {i} (init ai) = case1 refl initial .{f x} (fsuc x lt) = {!!} - chain-mono : ( A : HOD ) {x y : Ordinal} ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) { a b : Ordinal } + chain-mono : {x y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) { a b : Ordinal } → (zx : ZChain A y f a ) → (zy : ZChain A y f b) → a o≤ b → b o< osuc x → ZChain.chain zx ⊆' ZChain.chain zy -- @@ -623,7 +623,7 @@ u-chain∋x : odef Uz y u-chain∋x = record { u = y ; u<x = y<x ; chain∋z = ZChain.chain∋x (prev y y<x ay ) } u-mono : ( a b : Ordinal ) → b o< osuc x → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za ⊆' ZChain.chain zb - u-mono a b b≤x a≤b za zb {i} zai = chain-mono A f mf za zb a≤b b≤x zai + u-mono a b b≤x a≤b za zb {i} zai = chain-mono ay f mf za zb a≤b b≤x zai u-total : IsTotalOrderSet Uz u-total {x} {y} ux uy with trio< (UZFChain.u ux) (UZFChain.u uy) ... | tri< a ¬b ¬c = ZChain.f-total (uzc uy) (u-mono (UZFChain.u ux) (UZFChain.u uy) @@ -633,16 +633,19 @@ ... | tri> ¬a ¬b c = ZChain.f-total (uzc ux) (UZFChain.chain∋z ux) (u-mono (UZFChain.u uy) (UZFChain.u ux) (ordtrans (UZFChain.u<x ux) <-osuc) (ordtrans c <-osuc) (uzc uy) (uzc ux) (UZFChain.chain∋z uy)) - ind-mono : (A : HOD) (x y : Ordinal ) {b : Ordinal } ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (zb : ZChain A y f b) → + zfx : (x : Ordinal ) {y : Ordinal } (ay : odef A y ) ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → ZChain A y f x + zfx x ay f mf = TransFinite {λ z → {y : Ordinal } → (ay : odef A y ) → ZChain A y f z } (ind f mf) x ay + + ind-mono : (x : Ordinal ) {y : Ordinal } (ay : odef A y ) {b : Ordinal } ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (zb : ZChain A y f b) → (a : Ordinal) → ((c : Ordinal) → c o< a → c o≤ b → b o≤ x → (zc : ZChain A y f c) {i : Ordinal} → odef (ZChain.chain zc) i → odef (ZChain.chain zb) i) → a o≤ b → b o≤ x → (za : ZChain A y f a) {i : Ordinal} → odef (ZChain.chain za) i → odef (ZChain.chain zb) i - ind-mono A x y {b} f mf zb a prev a≤b b≤x za {i} zai with Oprev-p a + ind-mono x {y} ay {b} f mf zb a prev a≤b b≤x za {i} zai with Oprev-p a ... | yes op = mc00 where open ZChain px = Oprev.oprev op zc0 : ZChain A y f (Oprev.oprev op) - zc0 = ? + zc0 = {!!} -- zfx (Oprev.oprev op) ay f mf mc00 : odef (chain zb) i mc00 with ODC.∋-p O A (* a) ... | no noax = {!!} @@ -656,9 +659,9 @@ ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b y<x = {!!} - chain-mono A {x} {y} f mf {a} {b} za zb a≤b b≤x = TransFinite {λ a → + chain-mono {x} {y} ay f mf {a} {b} za zb a≤b b≤x = TransFinite {λ a → a o≤ b → b o≤ x → (za : ZChain A y f a) → {i : Ordinal } → odef (ZChain.chain za) i → odef (ZChain.chain zb) i } - (ind-mono A x y f mf zb) a a≤b b≤x za + (ind-mono x ay f mf zb) a a≤b b≤x za zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM