Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 264:fee0fab14de0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Sep 2019 10:43:48 +0900 |
parents | 2e75710a936b |
children | 9bf100ae50ac |
files | ordinal.agda |
diffstat | 1 files changed, 31 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal.agda Mon Sep 23 09:16:39 2019 +0900 +++ b/ordinal.agda Mon Sep 23 10:43:48 2019 +0900 @@ -250,15 +250,37 @@ ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (ord→od y) (o<-subst c (sym diso) refl ) ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl )) + -- ZFSubset : (A x : OD ) → OD + -- ZFSubset A x = record { def = λ y → def A y ∧ def x y } + + -- Def : (A : OD ) → OD + -- Def A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) + + Ord-lemma : (a : Ordinal) (x : OD) → _⊆_ (ord→od a) (Ord a) {x} + Ord-lemma a x lt = o<-subst (c<→o< lt ) refl diso + + ⊆-trans : {a b c x : OD} → _⊆_ a b {x} → _⊆_ b c {x} → _⊆_ a c {x} + ⊆-trans a⊆b b⊆c a∋x = b⊆c (a⊆b a∋x) + + _∩_ = IsZF._∩_ isZF + + ord-power-lemma : {a : Ordinal} → Power (Ord a) == Def (Ord a) + ord-power-lemma {a} = record { eq→ = left ; eq← = right } where + left : {x : Ordinal} → def (Power (Ord a)) x → def (Def (Ord a)) x + left {x} lt = lemma1 where + lemma : od→ord ((Ord a) ∩ (ord→od x)) o< sup-o ( λ y → od→ord ((Ord a) ∩ (ord→od y))) + lemma = sup-o< { λ y → od→ord ((Ord a) ∩ (ord→od y))} {x} + lemma1 : x o< sup-o ( λ x → od→ord ( ZFSubset (Ord a) (ord→od x ))) + lemma1 = {!!} + right : {x : Ordinal } → def (Def (Ord a)) x → def (Power (Ord a)) x + right {x} lt = def-subst {_} {_} {Power (Ord a)} {x} (IsZF.power← isZF (Ord a) (ord→od x) {!!}) refl diso + uncountable : (a y : Ordinal) → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od y) - uncountable a y = TransFinite {n} {suc n} {λ z → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od z)} caseΦ caseOSuc y where - caseΦ : (lx : Nat) → ((x : Ordinal) → x o< ordinal lx (Φ lx) → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od x)) - → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od (record { lv = lx ; ord = Φ lx })) - caseΦ lx prev = {!!} - caseOSuc : (lx : Nat) (ox : OrdinalD lx) - → ((y₁ : Ordinal) → y₁ o< ordinal lx (OSuc lx ox) → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od y₁)) - → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od (record { lv = lx ; ord = OSuc lx ox })) - caseOSuc lx ox prev = {!!} + uncountable a y = ⊆→o< lemma where + lemma-a : (x : OD ) → _⊆_ (ZFSubset (Ord a) (ord→od y)) (Ord a) {x} + lemma-a x lt = proj1 lt + lemma : (x : OD ) → _⊆_ (Ord ( od→ord (ZFSubset (Ord a) (ord→od y)))) (Ord a) {x} + lemma x = {!!} continuum-hyphotheis : (a : Ordinal) → (x : OD) → _⊆_ (Power (Ord a)) (Ord (osuc a)) {x} continuum-hyphotheis a x = lemma2 where @@ -267,4 +289,4 @@ lemma : _⊆_ (Def (Ord a)) (Ord (osuc a)) {x} lemma = o<→c< lemma1 lemma2 : _⊆_ (Power (Ord a)) (Ord (osuc a)) {x} - lemma2 = {!!} + lemma2 = subst ( λ k → _⊆_ k (Ord (osuc a)) {x} ) (sym (==→o≡ ord-power-lemma)) lemma