Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 265:9bf100ae50ac
filter
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Sep 2019 16:34:15 +0900 |
parents | fee0fab14de0 |
children | 0d7d6e4da36f |
files | filter.agda |
diffstat | 1 files changed, 16 insertions(+), 56 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Mon Sep 23 10:43:48 2019 +0900 +++ b/filter.agda Mon Sep 30 16:34:15 2019 +0900 @@ -22,66 +22,26 @@ open _∨_ open Bool -record Filter ( P max : OD ) : Set (suc n) where - field - _⊇_ : OD → OD → Set n - G : OD - G∋1 : G ∋ max - Gmax : { p : OD } → P ∋ p → p ⊇ max - Gless : { p q : OD } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q - Gcompat : { p q : OD } → G ∋ p → G ∋ q → ¬ ( - ( r : OD ) → (( p ⊇ r ) ∧ ( p ⊇ r ))) - -dense : Set (suc n) -dense = { D P p : OD } → ({x : OD } → P ∋ p → ¬ ( ( q : OD ) → D ∋ q → od→ord p o< od→ord q )) - -record NatFilter ( P : Nat → Set n) : Set (suc n) where +record Filter ( L : OD ) : Set (suc n) where field - GN : Nat → Set n - GN∋1 : GN 0 - GNmax : { p : Nat } → P p → 0 ≤ p - GNless : { p q : Nat } → GN p → P q → q ≤ p → GN q - Gr : ( p q : Nat ) → GN p → GN q → Nat - GNcompat : { p q : Nat } → (gp : GN p) → (gq : GN q ) → ( Gr p q gp gq ≤ p ) ∨ ( Gr p q gp gq ≤ q ) + F1 : { p q : OD } → L ∋ p → od→ord p o< od→ord q → L ∋ q + F2 : { p q : OD } → L ∋ p → L ∋ q → def L (minα (od→ord p ) (od→ord q )) -record NatDense {n : Level} ( P : Nat → Set n) : Set (suc n) where - field - Gmid : { p : Nat } → P p → Nat - GDense : { D : Nat → Set n } → {x p : Nat } → (pp : P p ) → D (Gmid {p} pp) → Gmid pp ≤ p +open Filter -open OD.OD - --- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) +proper-filter : {L : OD} → Filter L → Set n +proper-filter {L} P = ¬ ( L ∋ od∅ ) -Pred : ( Dom : OD ) → OD -Pred dom = record { - def = λ x → def dom x → {!!} - } +prime-filter : {L : OD} → Filter L → {p q : OD } → Set n +prime-filter {L} P {p} {q} = def L ( maxα ( od→ord p ) (od→ord q )) → ( L ∋ p ) ∨ ( L ∋ q ) -Hω2 : OD -Hω2 = record { def = λ x → {dom : Ordinal } → x ≡ od→ord ( Pred ( ord→od dom )) } +ultra-filter : {L : OD} → Filter L → {p : OD } → Set n +ultra-filter {L} P {p} = ( L ∋ p ) ∨ ( ¬ ( L ∋ p )) -Hω2Filter : Filter Hω2 od∅ -Hω2Filter = record { - _⊇_ = _⊇_ - ; G = {!!} - ; G∋1 = {!!} - ; Gmax = {!!} - ; Gless = {!!} - ; Gcompat = {!!} - } where - P = Hω2 - _⊇_ : OD → OD → Set n - _⊇_ = {!!} - G : OD - G = {!!} - G∋1 : G ∋ od∅ - G∋1 = {!!} - Gmax : { p : OD } → P ∋ p → p ⊇ od∅ - Gmax = {!!} - Gless : { p q : OD } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q - Gless = {!!} - Gcompat : { p q : OD } → G ∋ p → G ∋ q → ¬ ( - ( r : OD ) → (( p ⊇ r ) ∧ ( p ⊇ r ))) - Gcompat = {!!} +-- H(ω,2) = Lower ( Lower ω ) = Def ( Def ω)) +postulate + dist-ord : {p q r : Ordinal } → minα p ( maxα q r ) ≡ maxα ( minα p q ) ( minα p r ) + +filter-lemma1 : {L : OD} → (P : Filter L) → {p q : OD } → ( (p : OD) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} +filter-lemma1 {L} P {p} {q} u lt = {!!}