Mercurial > hg > Members > kono > Proof > ZF-in-agda
view filter.agda @ 265:9bf100ae50ac
filter
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Sep 2019 16:34:15 +0900 |
parents | 650bdad56729 |
children | 0d7d6e4da36f |
line wrap: on
line source
open import Level open import Ordinals module filter {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open inOrdinal O open OD O open OD.OD open _∧_ open _∨_ open Bool record Filter ( L : OD ) : Set (suc n) where field F1 : { p q : OD } → L ∋ p → od→ord p o< od→ord q → L ∋ q F2 : { p q : OD } → L ∋ p → L ∋ q → def L (minα (od→ord p ) (od→ord q )) open Filter proper-filter : {L : OD} → Filter L → Set n proper-filter {L} P = ¬ ( L ∋ od∅ ) prime-filter : {L : OD} → Filter L → {p q : OD } → Set n prime-filter {L} P {p} {q} = def L ( maxα ( od→ord p ) (od→ord q )) → ( L ∋ p ) ∨ ( L ∋ q ) ultra-filter : {L : OD} → Filter L → {p : OD } → Set n ultra-filter {L} P {p} = ( L ∋ p ) ∨ ( ¬ ( L ∋ p )) -- H(ω,2) = Lower ( Lower ω ) = Def ( Def ω)) postulate dist-ord : {p q r : Ordinal } → minα p ( maxα q r ) ≡ maxα ( minα p q ) ( minα p r ) filter-lemma1 : {L : OD} → (P : Filter L) → {p q : OD } → ( (p : OD) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} filter-lemma1 {L} P {p} {q} u lt = {!!}