Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate filter.agda @ 265:9bf100ae50ac
filter
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Sep 2019 16:34:15 +0900 |
parents | 650bdad56729 |
children | 0d7d6e4da36f |
rev | line source |
---|---|
190 | 1 open import Level |
236 | 2 open import Ordinals |
3 module filter {n : Level } (O : Ordinals {n}) where | |
4 | |
190 | 5 open import zf |
236 | 6 open import logic |
7 import OD | |
193 | 8 |
190 | 9 open import Relation.Nullary |
10 open import Relation.Binary | |
11 open import Data.Empty | |
12 open import Relation.Binary | |
13 open import Relation.Binary.Core | |
14 open import Relation.Binary.PropositionalEquality | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
15 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
16 |
236 | 17 open inOrdinal O |
18 open OD O | |
19 open OD.OD | |
190 | 20 |
236 | 21 open _∧_ |
22 open _∨_ | |
23 open Bool | |
24 | |
265 | 25 record Filter ( L : OD ) : Set (suc n) where |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
26 field |
265 | 27 F1 : { p q : OD } → L ∋ p → od→ord p o< od→ord q → L ∋ q |
28 F2 : { p q : OD } → L ∋ p → L ∋ q → def L (minα (od→ord p ) (od→ord q )) | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
29 |
265 | 30 open Filter |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
31 |
265 | 32 proper-filter : {L : OD} → Filter L → Set n |
33 proper-filter {L} P = ¬ ( L ∋ od∅ ) | |
190 | 34 |
265 | 35 prime-filter : {L : OD} → Filter L → {p q : OD } → Set n |
36 prime-filter {L} P {p} {q} = def L ( maxα ( od→ord p ) (od→ord q )) → ( L ∋ p ) ∨ ( L ∋ q ) | |
190 | 37 |
265 | 38 ultra-filter : {L : OD} → Filter L → {p : OD } → Set n |
39 ultra-filter {L} P {p} = ( L ∋ p ) ∨ ( ¬ ( L ∋ p )) | |
190 | 40 |
265 | 41 -- H(ω,2) = Lower ( Lower ω ) = Def ( Def ω)) |
190 | 42 |
265 | 43 postulate |
44 dist-ord : {p q r : Ordinal } → minα p ( maxα q r ) ≡ maxα ( minα p q ) ( minα p r ) | |
45 | |
46 filter-lemma1 : {L : OD} → (P : Filter L) → {p q : OD } → ( (p : OD) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} | |
47 filter-lemma1 {L} P {p} {q} u lt = {!!} |