Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate filter.agda @ 236:650bdad56729
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 16 Aug 2019 15:53:29 +0900 |
parents | 0b9645a65542 |
children | 9bf100ae50ac |
rev | line source |
---|---|
190 | 1 open import Level |
236 | 2 open import Ordinals |
3 module filter {n : Level } (O : Ordinals {n}) where | |
4 | |
190 | 5 open import zf |
236 | 6 open import logic |
7 import OD | |
193 | 8 |
190 | 9 open import Relation.Nullary |
10 open import Relation.Binary | |
11 open import Data.Empty | |
12 open import Relation.Binary | |
13 open import Relation.Binary.Core | |
14 open import Relation.Binary.PropositionalEquality | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
15 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
16 |
236 | 17 open inOrdinal O |
18 open OD O | |
19 open OD.OD | |
190 | 20 |
236 | 21 open _∧_ |
22 open _∨_ | |
23 open Bool | |
24 | |
25 record Filter ( P max : OD ) : Set (suc n) where | |
190 | 26 field |
236 | 27 _⊇_ : OD → OD → Set n |
28 G : OD | |
190 | 29 G∋1 : G ∋ max |
236 | 30 Gmax : { p : OD } → P ∋ p → p ⊇ max |
31 Gless : { p q : OD } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q | |
32 Gcompat : { p q : OD } → G ∋ p → G ∋ q → ¬ ( | |
33 ( r : OD ) → (( p ⊇ r ) ∧ ( p ⊇ r ))) | |
190 | 34 |
236 | 35 dense : Set (suc n) |
36 dense = { D P p : OD } → ({x : OD } → P ∋ p → ¬ ( ( q : OD ) → D ∋ q → od→ord p o< od→ord q )) | |
190 | 37 |
236 | 38 record NatFilter ( P : Nat → Set n) : Set (suc n) where |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
39 field |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
40 GN : Nat → Set n |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
41 GN∋1 : GN 0 |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
42 GNmax : { p : Nat } → P p → 0 ≤ p |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
43 GNless : { p q : Nat } → GN p → P q → q ≤ p → GN q |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
44 Gr : ( p q : Nat ) → GN p → GN q → Nat |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
45 GNcompat : { p q : Nat } → (gp : GN p) → (gq : GN q ) → ( Gr p q gp gq ≤ p ) ∨ ( Gr p q gp gq ≤ q ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
46 |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
47 record NatDense {n : Level} ( P : Nat → Set n) : Set (suc n) where |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
48 field |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
49 Gmid : { p : Nat } → P p → Nat |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
50 GDense : { D : Nat → Set n } → {x p : Nat } → (pp : P p ) → D (Gmid {p} pp) → Gmid pp ≤ p |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
51 |
190 | 52 open OD.OD |
53 | |
54 -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) | |
55 | |
236 | 56 Pred : ( Dom : OD ) → OD |
57 Pred dom = record { | |
58 def = λ x → def dom x → {!!} | |
190 | 59 } |
60 | |
236 | 61 Hω2 : OD |
62 Hω2 = record { def = λ x → {dom : Ordinal } → x ≡ od→ord ( Pred ( ord→od dom )) } | |
190 | 63 |
236 | 64 Hω2Filter : Filter Hω2 od∅ |
65 Hω2Filter = record { | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
66 _⊇_ = _⊇_ |
190 | 67 ; G = {!!} |
68 ; G∋1 = {!!} | |
69 ; Gmax = {!!} | |
70 ; Gless = {!!} | |
71 ; Gcompat = {!!} | |
72 } where | |
73 P = Hω2 | |
236 | 74 _⊇_ : OD → OD → Set n |
190 | 75 _⊇_ = {!!} |
236 | 76 G : OD |
190 | 77 G = {!!} |
78 G∋1 : G ∋ od∅ | |
79 G∋1 = {!!} | |
236 | 80 Gmax : { p : OD } → P ∋ p → p ⊇ od∅ |
190 | 81 Gmax = {!!} |
236 | 82 Gless : { p q : OD } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q |
190 | 83 Gless = {!!} |
236 | 84 Gcompat : { p q : OD } → G ∋ p → G ∋ q → ¬ ( |
85 ( r : OD ) → (( p ⊇ r ) ∧ ( p ⊇ r ))) | |
190 | 86 Gcompat = {!!} |
87 |