Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 266:0d7d6e4da36f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Sep 2019 17:07:40 +0900 |
parents | 9bf100ae50ac |
children | e469de3ae7cc |
files | filter.agda |
diffstat | 1 files changed, 29 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Mon Sep 30 16:34:15 2019 +0900 +++ b/filter.agda Mon Sep 30 17:07:40 2019 +0900 @@ -24,24 +24,42 @@ record Filter ( L : OD ) : Set (suc n) where field - F1 : { p q : OD } → L ∋ p → od→ord p o< od→ord q → L ∋ q - F2 : { p q : OD } → L ∋ p → L ∋ q → def L (minα (od→ord p ) (od→ord q )) + F1 : { p q : Ordinal } → def L p → p o< osuc q → def L q + F2 : { p q : Ordinal } → def L p → def L q → def L (minα p q) open Filter proper-filter : {L : OD} → Filter L → Set n -proper-filter {L} P = ¬ ( L ∋ od∅ ) - -prime-filter : {L : OD} → Filter L → {p q : OD } → Set n -prime-filter {L} P {p} {q} = def L ( maxα ( od→ord p ) (od→ord q )) → ( L ∋ p ) ∨ ( L ∋ q ) +proper-filter {L} P = ¬ ( def L o∅ ) -ultra-filter : {L : OD} → Filter L → {p : OD } → Set n -ultra-filter {L} P {p} = ( L ∋ p ) ∨ ( ¬ ( L ∋ p )) +prime-filter : {L : OD} → Filter L → {p q : Ordinal } → Set n +prime-filter {L} P {p} {q} = def L ( maxα p q) → ( def L p ) ∨ ( def L q ) --- H(ω,2) = Lower ( Lower ω ) = Def ( Def ω)) +ultra-filter : {L : OD} → Filter L → {p : Ordinal } → Set n +ultra-filter {L} P {p} = ( def L p ) ∨ ( ¬ ( def L p )) postulate dist-ord : {p q r : Ordinal } → minα p ( maxα q r ) ≡ maxα ( minα p q ) ( minα p r ) -filter-lemma1 : {L : OD} → (P : Filter L) → {p q : OD } → ( (p : OD) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} -filter-lemma1 {L} P {p} {q} u lt = {!!} +filter-lemma1 : {L : OD} → (P : Filter L) → {p q : Ordinal } → ( (p : Ordinal ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} +filter-lemma1 {L} P {p} {q} u lt with u p | u q +filter-lemma1 {L} P {p} {q} u lt | case1 x | case1 y = case1 x +filter-lemma1 {L} P {p} {q} u lt | case1 x | case2 y = case1 x +filter-lemma1 {L} P {p} {q} u lt | case2 x | case1 y = case2 y +filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y with trio< p q +filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri< a ¬b ¬c = ⊥-elim ( y lt ) +filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri≈ ¬a refl ¬c = ⊥-elim ( y lt ) +filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri> ¬a ¬b c = ⊥-elim ( x lt ) + +generated-filter : {L : OD} → Filter L → (p : Ordinal ) → Filter ( record { def = λ x → def L x ∨ (x ≡ p) } ) +generated-filter {L} P p = record { + F1 = {!!} ; F2 = {!!} + } + +-- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) + +infinite = ZF.infinite OD→ZF + +Hω2 : Filter (Power (Power infinite)) +Hω2 = {!!} +