Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 267:e469de3ae7cc
⊆
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Sep 2019 20:59:45 +0900 |
parents | 0d7d6e4da36f |
children | 7b4a66710cdd |
files | filter.agda |
diffstat | 1 files changed, 17 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Mon Sep 30 17:07:40 2019 +0900 +++ b/filter.agda Mon Sep 30 20:59:45 2019 +0900 @@ -22,36 +22,39 @@ open _∨_ open Bool +_∩_ : ( A B : OD ) → OD +A ∩ B = record { def = λ x → def A x ∧ def B x } + +_∪_ : ( A B : OD ) → OD +A ∪ B = Union (A , B) + record Filter ( L : OD ) : Set (suc n) where field - F1 : { p q : Ordinal } → def L p → p o< osuc q → def L q - F2 : { p q : Ordinal } → def L p → def L q → def L (minα p q) + F1 : { p q : OD } → L ∋ p → ({ x : OD} → _⊆_ p q {x} ) → L ∋ q + F2 : { p q : OD } → L ∋ p → L ∋ q → L ∋ (p ∩ q) open Filter proper-filter : {L : OD} → Filter L → Set n -proper-filter {L} P = ¬ ( def L o∅ ) +proper-filter {L} P = ¬ ( L ∋ od∅ ) -prime-filter : {L : OD} → Filter L → {p q : Ordinal } → Set n -prime-filter {L} P {p} {q} = def L ( maxα p q) → ( def L p ) ∨ ( def L q ) +prime-filter : {L : OD} → Filter L → {p q : OD } → Set n +prime-filter {L} P {p} {q} = L ∋ ( p ∪ q) → ( L ∋ p ) ∨ ( L ∋ q ) -ultra-filter : {L : OD} → Filter L → {p : Ordinal } → Set n -ultra-filter {L} P {p} = ( def L p ) ∨ ( ¬ ( def L p )) +ultra-filter : {L : OD} → Filter L → {p : OD } → Set n +ultra-filter {L} P {p} = ( L ∋ p ) ∨ ( ¬ ( L ∋ p )) postulate - dist-ord : {p q r : Ordinal } → minα p ( maxα q r ) ≡ maxα ( minα p q ) ( minα p r ) + dist-ord : {p q r : OD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) -filter-lemma1 : {L : OD} → (P : Filter L) → {p q : Ordinal } → ( (p : Ordinal ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} +filter-lemma1 : {L : OD} → (P : Filter L) → {p q : OD } → ( (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} filter-lemma1 {L} P {p} {q} u lt with u p | u q filter-lemma1 {L} P {p} {q} u lt | case1 x | case1 y = case1 x filter-lemma1 {L} P {p} {q} u lt | case1 x | case2 y = case1 x filter-lemma1 {L} P {p} {q} u lt | case2 x | case1 y = case2 y -filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y with trio< p q -filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri< a ¬b ¬c = ⊥-elim ( y lt ) -filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri≈ ¬a refl ¬c = ⊥-elim ( y lt ) -filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri> ¬a ¬b c = ⊥-elim ( x lt ) +filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y = ⊥-elim ( y ? ) -generated-filter : {L : OD} → Filter L → (p : Ordinal ) → Filter ( record { def = λ x → def L x ∨ (x ≡ p) } ) +generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) generated-filter {L} P p = record { F1 = {!!} ; F2 = {!!} }