Mercurial > hg > Members > kono > Proof > automaton
comparison agda/logic.agda @ 73:031e00cea8f1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 07 Nov 2019 11:36:23 +0900 |
parents | c75aee1d6b4b |
children | 762d5a6fbe09 |
comparison
equal
deleted
inserted
replaced
72:c75aee1d6b4b | 73:031e00cea8f1 |
---|---|
81 bool-≡-? : (a b : Bool) → Dec ( a ≡ b ) | 81 bool-≡-? : (a b : Bool) → Dec ( a ≡ b ) |
82 bool-≡-? true true = yes refl | 82 bool-≡-? true true = yes refl |
83 bool-≡-? true false = no (λ ()) | 83 bool-≡-? true false = no (λ ()) |
84 bool-≡-? false true = no (λ ()) | 84 bool-≡-? false true = no (λ ()) |
85 bool-≡-? false false = yes refl | 85 bool-≡-? false false = yes refl |
86 | |
87 ¬-bool-t : {a : Bool} → ¬ ( a ≡ true ) → a ≡ false | |
88 ¬-bool-t {true} ne = ⊥-elim ( ne refl ) | |
89 ¬-bool-t {false} ne = refl | |
90 | |
91 ¬-bool-f : {a : Bool} → ¬ ( a ≡ false ) → a ≡ true | |
92 ¬-bool-f {true} ne = refl | |
93 ¬-bool-f {false} ne = ⊥-elim ( ne refl ) | |
94 | |
95 lemma-∧-0 : {a b : Bool} → a /\ b ≡ true → a ≡ false → ⊥ | |
96 lemma-∧-0 {true} {true} refl () | |
97 lemma-∧-0 {true} {false} () | |
98 lemma-∧-0 {false} {true} () | |
99 lemma-∧-0 {false} {false} () | |
100 | |
101 lemma-∧-1 : {a b : Bool} → a /\ b ≡ true → b ≡ false → ⊥ | |
102 lemma-∧-1 {true} {true} refl () | |
103 lemma-∧-1 {true} {false} () | |
104 lemma-∧-1 {false} {true} () | |
105 lemma-∧-1 {false} {false} () |