Mercurial > hg > Members > kono > Proof > automaton
diff agda/logic.agda @ 73:031e00cea8f1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 07 Nov 2019 11:36:23 +0900 |
parents | c75aee1d6b4b |
children | 762d5a6fbe09 |
line wrap: on
line diff
--- a/agda/logic.agda Thu Nov 07 10:55:22 2019 +0900 +++ b/agda/logic.agda Thu Nov 07 11:36:23 2019 +0900 @@ -83,3 +83,23 @@ bool-≡-? true false = no (λ ()) bool-≡-? false true = no (λ ()) bool-≡-? false false = yes refl + +¬-bool-t : {a : Bool} → ¬ ( a ≡ true ) → a ≡ false +¬-bool-t {true} ne = ⊥-elim ( ne refl ) +¬-bool-t {false} ne = refl + +¬-bool-f : {a : Bool} → ¬ ( a ≡ false ) → a ≡ true +¬-bool-f {true} ne = refl +¬-bool-f {false} ne = ⊥-elim ( ne refl ) + +lemma-∧-0 : {a b : Bool} → a /\ b ≡ true → a ≡ false → ⊥ +lemma-∧-0 {true} {true} refl () +lemma-∧-0 {true} {false} () +lemma-∧-0 {false} {true} () +lemma-∧-0 {false} {false} () + +lemma-∧-1 : {a b : Bool} → a /\ b ≡ true → b ≡ false → ⊥ +lemma-∧-1 {true} {true} refl () +lemma-∧-1 {true} {false} () +lemma-∧-1 {false} {true} () +lemma-∧-1 {false} {false} ()