Mercurial > hg > Members > kono > Proof > automaton
comparison agda/fin.agda @ 163:26407ce19d66
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 13 Jan 2021 10:52:01 +0900 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
162:690a8352c1ad | 163:26407ce19d66 |
---|---|
1 {-# OPTIONS --allow-unsolved-metas #-} | |
2 | |
3 module fin where | |
4 | |
5 open import Data.Fin hiding (_<_ ; _≤_ ) | |
6 open import Data.Fin.Properties hiding ( <-trans ) | |
7 open import Data.Nat | |
8 open import logic | |
9 open import nat | |
10 open import Relation.Binary.PropositionalEquality | |
11 | |
12 | |
13 -- toℕ<n | |
14 fin<n : {n : ℕ} {f : Fin n} → toℕ f < n | |
15 fin<n {_} {zero} = s≤s z≤n | |
16 fin<n {suc n} {suc f} = s≤s (fin<n {n} {f}) | |
17 | |
18 -- toℕ≤n | |
19 fin≤n : {n : ℕ} (f : Fin (suc n)) → toℕ f ≤ n | |
20 fin≤n {_} zero = z≤n | |
21 fin≤n {suc n} (suc f) = s≤s (fin≤n {n} f) | |
22 | |
23 pred<n : {n : ℕ} {f : Fin (suc n)} → n > 0 → Data.Nat.pred (toℕ f) < n | |
24 pred<n {suc n} {zero} (s≤s z≤n) = s≤s z≤n | |
25 pred<n {suc n} {suc f} (s≤s z≤n) = fin<n | |
26 | |
27 fin<asa : {n : ℕ} → toℕ (fromℕ< {n} a<sa) ≡ n | |
28 fin<asa = toℕ-fromℕ< nat.a<sa | |
29 | |
30 -- fromℕ<-toℕ | |
31 toℕ→from : {n : ℕ} {x : Fin (suc n)} → toℕ x ≡ n → fromℕ n ≡ x | |
32 toℕ→from {0} {zero} refl = refl | |
33 toℕ→from {suc n} {suc x} eq = cong (λ k → suc k ) ( toℕ→from {n} {x} (cong (λ k → Data.Nat.pred k ) eq )) | |
34 | |
35 0≤fmax : {n : ℕ } → (# 0) Data.Fin.≤ fromℕ< {n} a<sa | |
36 0≤fmax = subst (λ k → 0 ≤ k ) (sym (toℕ-fromℕ< a<sa)) z≤n | |
37 | |
38 0<fmax : {n : ℕ } → (# 0) Data.Fin.< fromℕ< {suc n} a<sa | |
39 0<fmax = subst (λ k → 0 < k ) (sym (toℕ-fromℕ< a<sa)) (s≤s z≤n) | |
40 | |
41 -- toℕ-injective | |
42 i=j : {n : ℕ} (i j : Fin n) → toℕ i ≡ toℕ j → i ≡ j | |
43 i=j {suc n} zero zero refl = refl | |
44 i=j {suc n} (suc i) (suc j) eq = cong ( λ k → suc k ) ( i=j i j (cong ( λ k → Data.Nat.pred k ) eq) ) | |
45 | |
46 -- raise 1 | |
47 fin+1 : { n : ℕ } → Fin n → Fin (suc n) | |
48 fin+1 zero = zero | |
49 fin+1 (suc x) = suc (fin+1 x) | |
50 | |
51 open import Data.Nat.Properties as NatP hiding ( _≟_ ) | |
52 | |
53 fin+1≤ : { i n : ℕ } → (a : i < n) → fin+1 (fromℕ< a) ≡ fromℕ< (<-trans a a<sa) | |
54 fin+1≤ {0} {suc i} (s≤s z≤n) = refl | |
55 fin+1≤ {suc n} {suc (suc i)} (s≤s (s≤s a)) = cong (λ k → suc k ) ( fin+1≤ {n} {suc i} (s≤s a) ) | |
56 | |
57 fin+1-toℕ : { n : ℕ } → { x : Fin n} → toℕ (fin+1 x) ≡ toℕ x | |
58 fin+1-toℕ {suc n} {zero} = refl | |
59 fin+1-toℕ {suc n} {suc x} = cong (λ k → suc k ) (fin+1-toℕ {n} {x}) | |
60 | |
61 open import Relation.Nullary | |
62 open import Data.Empty | |
63 | |
64 fin-1 : { n : ℕ } → (x : Fin (suc n)) → ¬ (x ≡ zero ) → Fin n | |
65 fin-1 zero ne = ⊥-elim (ne refl ) | |
66 fin-1 {n} (suc x) ne = x | |
67 | |
68 fin-1-sx : { n : ℕ } → (x : Fin n) → fin-1 (suc x) (λ ()) ≡ x | |
69 fin-1-sx zero = refl | |
70 fin-1-sx (suc x) = refl | |
71 | |
72 fin-1-xs : { n : ℕ } → (x : Fin (suc n)) → (ne : ¬ (x ≡ zero )) → suc (fin-1 x ne ) ≡ x | |
73 fin-1-xs zero ne = ⊥-elim ( ne refl ) | |
74 fin-1-xs (suc x) ne = refl | |
75 | |
76 -- suc-injective | |
77 -- suc-eq : {n : ℕ } {x y : Fin n} → Fin.suc x ≡ Fin.suc y → x ≡ y | |
78 -- suc-eq {n} {x} {y} eq = subst₂ (λ j k → j ≡ k ) {!!} {!!} (cong (λ k → Data.Fin.pred k ) eq ) | |
79 | |
80 -- this is refl | |
81 lemma3 : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt) | |
82 lemma3 (s≤s lt) = refl | |
83 | |
84 -- fromℕ<-toℕ | |
85 lemma12 : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m | |
86 lemma12 {zero} {suc m} (s≤s z≤n) zero refl = refl | |
87 lemma12 {suc n} {suc m} (s≤s n<m) (suc f) refl = cong suc ( lemma12 {n} {m} n<m f refl ) | |
88 | |
89 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) | |
90 open import Data.Fin.Properties | |
91 | |
92 -- <-irrelevant | |
93 <-nat=irr : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n | |
94 <-nat=irr {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl | |
95 <-nat=irr {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( <-nat=irr {i} {i} {n} refl ) | |
96 | |
97 lemma8 : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n | |
98 lemma8 {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl | |
99 lemma8 {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8 {i} {i} {n} refl ) | |
100 | |
101 -- fromℕ<-irrelevant | |
102 lemma10 : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ< i<n ≡ fromℕ< j<n | |
103 lemma10 {n} refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ< k ) (lemma8 refl )) | |
104 | |
105 lemma31 : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c | |
106 lemma31 {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8 refl) | |
107 | |
108 -- toℕ-fromℕ< | |
109 lemma11 : {n m : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x | |
110 lemma11 {n} {m} {x} n<m = begin | |
111 toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) | |
112 ≡⟨ toℕ-fromℕ< _ ⟩ | |
113 toℕ x | |
114 ∎ where | |
115 open ≡-Reasoning | |
116 | |
117 |