Mercurial > hg > Members > kono > Proof > automaton
diff agda/fin.agda @ 163:26407ce19d66
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 13 Jan 2021 10:52:01 +0900 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/agda/fin.agda Wed Jan 13 10:52:01 2021 +0900 @@ -0,0 +1,117 @@ +{-# OPTIONS --allow-unsolved-metas #-} + +module fin where + +open import Data.Fin hiding (_<_ ; _≤_ ) +open import Data.Fin.Properties hiding ( <-trans ) +open import Data.Nat +open import logic +open import nat +open import Relation.Binary.PropositionalEquality + + +-- toℕ<n +fin<n : {n : ℕ} {f : Fin n} → toℕ f < n +fin<n {_} {zero} = s≤s z≤n +fin<n {suc n} {suc f} = s≤s (fin<n {n} {f}) + +-- toℕ≤n +fin≤n : {n : ℕ} (f : Fin (suc n)) → toℕ f ≤ n +fin≤n {_} zero = z≤n +fin≤n {suc n} (suc f) = s≤s (fin≤n {n} f) + +pred<n : {n : ℕ} {f : Fin (suc n)} → n > 0 → Data.Nat.pred (toℕ f) < n +pred<n {suc n} {zero} (s≤s z≤n) = s≤s z≤n +pred<n {suc n} {suc f} (s≤s z≤n) = fin<n + +fin<asa : {n : ℕ} → toℕ (fromℕ< {n} a<sa) ≡ n +fin<asa = toℕ-fromℕ< nat.a<sa + +-- fromℕ<-toℕ +toℕ→from : {n : ℕ} {x : Fin (suc n)} → toℕ x ≡ n → fromℕ n ≡ x +toℕ→from {0} {zero} refl = refl +toℕ→from {suc n} {suc x} eq = cong (λ k → suc k ) ( toℕ→from {n} {x} (cong (λ k → Data.Nat.pred k ) eq )) + +0≤fmax : {n : ℕ } → (# 0) Data.Fin.≤ fromℕ< {n} a<sa +0≤fmax = subst (λ k → 0 ≤ k ) (sym (toℕ-fromℕ< a<sa)) z≤n + +0<fmax : {n : ℕ } → (# 0) Data.Fin.< fromℕ< {suc n} a<sa +0<fmax = subst (λ k → 0 < k ) (sym (toℕ-fromℕ< a<sa)) (s≤s z≤n) + +-- toℕ-injective +i=j : {n : ℕ} (i j : Fin n) → toℕ i ≡ toℕ j → i ≡ j +i=j {suc n} zero zero refl = refl +i=j {suc n} (suc i) (suc j) eq = cong ( λ k → suc k ) ( i=j i j (cong ( λ k → Data.Nat.pred k ) eq) ) + +-- raise 1 +fin+1 : { n : ℕ } → Fin n → Fin (suc n) +fin+1 zero = zero +fin+1 (suc x) = suc (fin+1 x) + +open import Data.Nat.Properties as NatP hiding ( _≟_ ) + +fin+1≤ : { i n : ℕ } → (a : i < n) → fin+1 (fromℕ< a) ≡ fromℕ< (<-trans a a<sa) +fin+1≤ {0} {suc i} (s≤s z≤n) = refl +fin+1≤ {suc n} {suc (suc i)} (s≤s (s≤s a)) = cong (λ k → suc k ) ( fin+1≤ {n} {suc i} (s≤s a) ) + +fin+1-toℕ : { n : ℕ } → { x : Fin n} → toℕ (fin+1 x) ≡ toℕ x +fin+1-toℕ {suc n} {zero} = refl +fin+1-toℕ {suc n} {suc x} = cong (λ k → suc k ) (fin+1-toℕ {n} {x}) + +open import Relation.Nullary +open import Data.Empty + +fin-1 : { n : ℕ } → (x : Fin (suc n)) → ¬ (x ≡ zero ) → Fin n +fin-1 zero ne = ⊥-elim (ne refl ) +fin-1 {n} (suc x) ne = x + +fin-1-sx : { n : ℕ } → (x : Fin n) → fin-1 (suc x) (λ ()) ≡ x +fin-1-sx zero = refl +fin-1-sx (suc x) = refl + +fin-1-xs : { n : ℕ } → (x : Fin (suc n)) → (ne : ¬ (x ≡ zero )) → suc (fin-1 x ne ) ≡ x +fin-1-xs zero ne = ⊥-elim ( ne refl ) +fin-1-xs (suc x) ne = refl + +-- suc-injective +-- suc-eq : {n : ℕ } {x y : Fin n} → Fin.suc x ≡ Fin.suc y → x ≡ y +-- suc-eq {n} {x} {y} eq = subst₂ (λ j k → j ≡ k ) {!!} {!!} (cong (λ k → Data.Fin.pred k ) eq ) + +-- this is refl +lemma3 : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt) +lemma3 (s≤s lt) = refl + +-- fromℕ<-toℕ +lemma12 : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m +lemma12 {zero} {suc m} (s≤s z≤n) zero refl = refl +lemma12 {suc n} {suc m} (s≤s n<m) (suc f) refl = cong suc ( lemma12 {n} {m} n<m f refl ) + +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +open import Data.Fin.Properties + +-- <-irrelevant +<-nat=irr : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n +<-nat=irr {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl +<-nat=irr {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( <-nat=irr {i} {i} {n} refl ) + +lemma8 : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n +lemma8 {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl +lemma8 {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8 {i} {i} {n} refl ) + +-- fromℕ<-irrelevant +lemma10 : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ< i<n ≡ fromℕ< j<n +lemma10 {n} refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ< k ) (lemma8 refl )) + +lemma31 : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c +lemma31 {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8 refl) + +-- toℕ-fromℕ< +lemma11 : {n m : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x +lemma11 {n} {m} {x} n<m = begin + toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) + ≡⟨ toℕ-fromℕ< _ ⟩ + toℕ x + ∎ where + open ≡-Reasoning + +