comparison automaton-in-agda/src/gcd.agda @ 183:3fa72793620b

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 13 Jun 2021 20:45:17 +0900
parents automaton-in-agda/src/agda/gcd.agda@567754463810
children f9473f83f6e7
comparison
equal deleted inserted replaced
182:567754463810 183:3fa72793620b
1 {-# OPTIONS --allow-unsolved-metas #-}
2 module gcd where
3
4 open import Data.Nat
5 open import Data.Nat.Properties
6 open import Data.Empty
7 open import Data.Unit using (⊤ ; tt)
8 open import Relation.Nullary
9 open import Relation.Binary.PropositionalEquality
10 open import Relation.Binary.Definitions
11 open import nat
12 open import logic
13
14 record Factor (n m : ℕ ) : Set where
15 field
16 factor : ℕ
17 remain : ℕ
18 is-factor : factor * n + remain ≡ m
19
20 record Dividable (n m : ℕ ) : Set where
21 field
22 factor : ℕ
23 is-factor : factor * n + 0 ≡ m
24
25 open Factor
26
27 open ≡-Reasoning
28
29 decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n
30 decf {n} {k} x with remain x
31 ... | zero = record { factor = factor x ; remain = k ; is-factor = {!!} }
32 ... | suc r = record { factor = factor x ; remain = r ; is-factor = {!!} }
33
34 ifk0 : ( i0 k : ℕ ) → (i0f : Factor k i0 ) → ( i0=0 : remain i0f ≡ 0 ) → factor i0f * k + 0 ≡ i0
35 ifk0 i0 k i0f i0=0 = begin
36 factor i0f * k + 0 ≡⟨ cong (λ m → factor i0f * k + m) (sym i0=0) ⟩
37 factor i0f * k + remain i0f ≡⟨ is-factor i0f ⟩
38 i0 ∎
39
40 ifzero : {k : ℕ } → (jf : Factor k zero ) → remain jf ≡ 0
41 ifzero = {!!}
42
43 gcd1 : ( i i0 j j0 : ℕ ) → ℕ
44 gcd1 zero i0 zero j0 with <-cmp i0 j0
45 ... | tri< a ¬b ¬c = i0
46 ... | tri≈ ¬a refl ¬c = i0
47 ... | tri> ¬a ¬b c = j0
48 gcd1 zero i0 (suc zero) j0 = 1
49 gcd1 zero zero (suc (suc j)) j0 = j0
50 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j))
51 gcd1 (suc zero) i0 zero j0 = 1
52 gcd1 (suc (suc i)) i0 zero zero = i0
53 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0)
54 gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0
55
56 gcd : ( i j : ℕ ) → ℕ
57 gcd i j = gcd1 i i j j
58
59 gcd-gt : ( i i0 j j0 k : ℕ ) → (if : Factor k i) (i0f : Factor k i0 ) (jf : Factor k i ) (j0f : Factor k j0)
60 → remain i0f ≡ 0 → remain j0f ≡ 0
61 → (remain if + i ) ≡ i0 → (remain jf + j ) ≡ j0
62 → Dividable k ( gcd1 i i0 j j0 )
63 gcd-gt zero i0 zero j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 with <-cmp i0 j0
64 ... | tri< a ¬b ¬c = record { factor = factor i0f ; is-factor = ifk0 i0 k i0f i0=0 }
65 ... | tri≈ ¬a refl ¬c = record { factor = factor i0f ; is-factor = ifk0 i0 k i0f i0=0 }
66 ... | tri> ¬a ¬b c = record { factor = factor j0f ; is-factor = ifk0 j0 k j0f j0=0 }
67 gcd-gt zero i0 (suc zero) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} -- can't happen
68 gcd-gt zero zero (suc (suc j)) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = record { factor = factor j0f ; is-factor = ifk0 j0 k j0f j0=0 }
69 gcd-gt zero (suc i0) (suc (suc j)) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 =
70 gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k (decf i0f) i0f (decf i0f)
71 record { factor = factor jf ; remain = remain jf ; is-factor = {!!} } i0=0 {!!} {!!} {!!}
72 gcd-gt (suc zero) i0 zero j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} -- can't happen
73 gcd-gt (suc (suc i)) i0 zero zero k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!}
74 gcd-gt (suc (suc i)) i0 zero (suc j0) k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 =
75 gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k (decf if) {!!} (decf jf) j0f j0=0 {!!} {!!} {!!}
76 gcd-gt (suc zero) i0 (suc j) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 =
77 gcd-gt zero i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 {!!} {!!}
78 gcd-gt (suc (suc i)) i0 (suc j) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 =
79 gcd-gt (suc i) i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 {!!} {!!}
80
81 -- gcd26 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n m ≡ gcd (n - m) m
82 -- gcd27 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n k ≡ k → k ≤ n
83
84 gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0
85 gcd22 zero i0 zero o0 = refl
86 gcd22 zero i0 (suc o) o0 = refl
87 gcd22 (suc i) i0 zero o0 = refl
88 gcd22 (suc i) i0 (suc o) o0 = refl
89
90 gcd20 : (i : ℕ) → gcd i 0 ≡ i
91 gcd20 zero = refl
92 gcd20 (suc i) = gcd201 (suc i) where
93 gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i
94 gcd201 zero = refl
95 gcd201 (suc zero) = refl
96 gcd201 (suc (suc i)) = refl
97
98 gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m
99 gcdmm zero m with <-cmp m m
100 ... | tri< a ¬b ¬c = refl
101 ... | tri≈ ¬a refl ¬c = refl
102 ... | tri> ¬a ¬b c = refl
103 gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m )
104
105 gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i
106 gcdsym2 i j with <-cmp i j | <-cmp j i
107 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁)
108 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
109 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
110 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
111 ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
112 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c)
113 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
114 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c)
115 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁)
116 gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0
117 gcdsym1 zero zero zero zero = refl
118 gcdsym1 zero zero zero (suc j0) = refl
119 gcdsym1 zero (suc i0) zero zero = refl
120 gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0)
121 gcdsym1 zero zero (suc zero) j0 = refl
122 gcdsym1 zero zero (suc (suc j)) j0 = refl
123 gcdsym1 zero (suc i0) (suc zero) j0 = refl
124 gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j))
125 gcdsym1 (suc zero) i0 zero j0 = refl
126 gcdsym1 (suc (suc i)) i0 zero zero = refl
127 gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0)
128 gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 )
129
130 gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n
131 gcdsym {n} {m} = gcdsym1 n n m m
132
133 gcd11 : ( i : ℕ ) → gcd i i ≡ i
134 gcd11 i = gcdmm i i
135
136 gcd203 : (i : ℕ) → gcd1 (suc i) (suc i) i i ≡ 1
137 gcd203 zero = refl
138 gcd203 (suc i) = gcd205 (suc i) where
139 gcd205 : (j : ℕ) → gcd1 (suc j) (suc (suc i)) j (suc i) ≡ 1
140 gcd205 zero = refl
141 gcd205 (suc j) = subst (λ k → k ≡ 1) (gcd22 (suc j) (suc (suc i)) j (suc i)) (gcd205 j)
142 gcd204 : (i : ℕ) → gcd1 1 1 i i ≡ 1
143 gcd204 zero = refl
144 gcd204 (suc zero) = refl
145 gcd204 (suc (suc zero)) = refl
146 gcd204 (suc (suc (suc i))) = gcd204 (suc (suc i))
147
148 gcd2 : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j
149 gcd2 i j = gcd200 i i j j refl refl where
150 gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1)
151 gcd202 zero j1 = refl
152 gcd202 (suc i) j1 = cong suc (gcd202 i j1)
153 gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0
154 gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl
155 gcd201 i i0 j j0 (suc j1) = begin
156 gcd1 (i + suc j1) (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩
157 gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩
158 gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩
159 gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning
160 gcd200 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0
161 gcd200 i .i zero .0 refl refl = subst (λ k → gcd1 k k zero zero ≡ gcd1 i i zero zero ) (+-comm zero i) refl
162 gcd200 (suc (suc i)) i0 (suc j) (suc j0) i=i0 j=j0 = gcd201 (suc (suc i)) i0 j (suc j0) (suc j)
163 gcd200 zero zero (suc zero) .1 i=i0 refl = refl
164 gcd200 zero zero (suc (suc j)) .(suc (suc j)) i=i0 refl = begin
165 gcd1 (zero + suc (suc j)) (zero + suc (suc j)) (suc (suc j)) (suc (suc j)) ≡⟨ gcdmm (suc (suc j)) (suc (suc j)) ⟩
166 suc (suc j) ≡⟨ sym (gcd20 (suc (suc j))) ⟩
167 gcd1 zero zero (suc (suc j)) (suc (suc j)) ∎ where open ≡-Reasoning
168 gcd200 zero (suc i0) (suc j) .(suc j) () refl
169 gcd200 (suc zero) .1 (suc j) .(suc j) refl refl = begin
170 gcd1 (1 + suc j) (1 + suc j) (suc j) (suc j) ≡⟨ gcd203 (suc j) ⟩
171 1 ≡⟨ sym ( gcd204 (suc j)) ⟩
172 gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning
173 gcd200 (suc (suc i)) i0 (suc j) zero i=i0 ()
174
175 gcd52 : {i : ℕ } → 1 < suc (suc i)
176 gcd52 {zero} = a<sa
177 gcd52 {suc i} = <-trans (gcd52 {i}) a<sa
178
179 gcd50 : (i i0 j j0 : ℕ) → 1 < i0 → i ≤ i0 → j ≤ j0 → gcd1 i i0 j j0 ≤ i0
180 gcd50 zero i0 zero j0 0<i i<i0 j<j0 with <-cmp i0 j0
181 ... | tri< a ¬b ¬c = ≤-refl
182 ... | tri≈ ¬a refl ¬c = ≤-refl
183 ... | tri> ¬a ¬b c = ≤-trans refl-≤s c
184 gcd50 zero (suc i0) (suc zero) j0 0<i i<i0 j<j0 = gcd51 0<i where
185 gcd51 : 1 < suc i0 → gcd1 zero (suc i0) 1 j0 ≤ suc i0
186 gcd51 1<i = ≤to< 1<i
187 gcd50 zero (suc i0) (suc (suc j)) j0 0<i i<i0 j<j0 = gcd50 i0 (suc i0) (suc j) (suc (suc j)) 0<i refl-≤s refl-≤s
188 gcd50 (suc zero) i0 zero j0 0<i i<i0 j<j0 = ≤to< 0<i
189 gcd50 (suc (suc i)) i0 zero zero 0<i i<i0 j<j0 = ≤-refl
190 gcd50 (suc (suc i)) i0 zero (suc j0) 0<i i<i0 j<j0 = ≤-trans (gcd50 (suc i) (suc (suc i)) j0 (suc j0) gcd52 refl-≤s refl-≤s) i<i0
191 gcd50 (suc i) i0 (suc j) j0 0<i i<i0 j<j0 = subst (λ k → k ≤ i0 ) (sym (gcd22 i i0 j j0))
192 (gcd50 i i0 j j0 0<i (≤-trans refl-≤s i<i0) (≤-trans refl-≤s j<j0))
193
194 gcd5 : ( n k : ℕ ) → 1 < n → gcd n k ≤ n
195 gcd5 n k 0<n = gcd50 n n k k 0<n ≤-refl ≤-refl
196
197 gcd6 : ( n k : ℕ ) → 1 < n → gcd k n ≤ n
198 gcd6 n k 1<n = subst (λ m → m ≤ n) (gcdsym {n} {k}) (gcd5 n k 1<n)
199
200 gcd4 : ( n k : ℕ ) → 1 < n → gcd n k ≡ k → k ≤ n
201 gcd4 n k 1<n eq = subst (λ m → m ≤ n ) eq (gcd5 n k 1<n)
202
203 gcdmul+1 : ( m n : ℕ ) → gcd (m * n + 1) n ≡ 1
204 gcdmul+1 zero n = gcd204 n
205 gcdmul+1 (suc m) n = begin
206 gcd (suc m * n + 1) n ≡⟨⟩
207 gcd (n + m * n + 1) n ≡⟨ cong (λ k → gcd k n ) (begin
208 n + m * n + 1 ≡⟨ cong (λ k → k + 1) (+-comm n _) ⟩
209 m * n + n + 1 ≡⟨ +-assoc (m * n) _ _ ⟩
210 m * n + (n + 1) ≡⟨ cong (λ k → m * n + k) (+-comm n _) ⟩
211 m * n + (1 + n) ≡⟨ sym ( +-assoc (m * n) _ _ ) ⟩
212 m * n + 1 + n ∎
213 ) ⟩
214 gcd (m * n + 1 + n) n ≡⟨ gcd2 (m * n + 1) n ⟩
215 gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩
216 1 ∎ where open ≡-Reasoning
217