annotate automaton-in-agda/src/gcd.agda @ 183:3fa72793620b

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 13 Jun 2021 20:45:17 +0900
parents automaton-in-agda/src/agda/gcd.agda@567754463810
children f9473f83f6e7
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
1 {-# OPTIONS --allow-unsolved-metas #-}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
2 module gcd where
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
4 open import Data.Nat
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
5 open import Data.Nat.Properties
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Empty
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
7 open import Data.Unit using (⊤ ; tt)
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Relation.Binary.PropositionalEquality
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
10 open import Relation.Binary.Definitions
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
11 open import nat
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
12 open import logic
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
14 record Factor (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
15 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
16 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
17 remain : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
18 is-factor : factor * n + remain ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
19
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
20 record Dividable (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
21 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
22 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
23 is-factor : factor * n + 0 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
24
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
25 open Factor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
26
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
27 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
28
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
29 decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
30 decf {n} {k} x with remain x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
31 ... | zero = record { factor = factor x ; remain = k ; is-factor = {!!} }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
32 ... | suc r = record { factor = factor x ; remain = r ; is-factor = {!!} }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
33
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
34 ifk0 : ( i0 k : ℕ ) → (i0f : Factor k i0 ) → ( i0=0 : remain i0f ≡ 0 ) → factor i0f * k + 0 ≡ i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
35 ifk0 i0 k i0f i0=0 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
36 factor i0f * k + 0 ≡⟨ cong (λ m → factor i0f * k + m) (sym i0=0) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
37 factor i0f * k + remain i0f ≡⟨ is-factor i0f ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
38 i0 ∎
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
39
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
40 ifzero : {k : ℕ } → (jf : Factor k zero ) → remain jf ≡ 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
41 ifzero = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
42
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
43 gcd1 : ( i i0 j j0 : ℕ ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
44 gcd1 zero i0 zero j0 with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
45 ... | tri< a ¬b ¬c = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
46 ... | tri≈ ¬a refl ¬c = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
47 ... | tri> ¬a ¬b c = j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
48 gcd1 zero i0 (suc zero) j0 = 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
49 gcd1 zero zero (suc (suc j)) j0 = j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
50 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
51 gcd1 (suc zero) i0 zero j0 = 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
52 gcd1 (suc (suc i)) i0 zero zero = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
53 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
54 gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
55
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
56 gcd : ( i j : ℕ ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
57 gcd i j = gcd1 i i j j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
58
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
59 gcd-gt : ( i i0 j j0 k : ℕ ) → (if : Factor k i) (i0f : Factor k i0 ) (jf : Factor k i ) (j0f : Factor k j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
60 → remain i0f ≡ 0 → remain j0f ≡ 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
61 → (remain if + i ) ≡ i0 → (remain jf + j ) ≡ j0
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
62 → Dividable k ( gcd1 i i0 j j0 )
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
63 gcd-gt zero i0 zero j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 with <-cmp i0 j0
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
64 ... | tri< a ¬b ¬c = record { factor = factor i0f ; is-factor = ifk0 i0 k i0f i0=0 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
65 ... | tri≈ ¬a refl ¬c = record { factor = factor i0f ; is-factor = ifk0 i0 k i0f i0=0 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
66 ... | tri> ¬a ¬b c = record { factor = factor j0f ; is-factor = ifk0 j0 k j0f j0=0 }
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
67 gcd-gt zero i0 (suc zero) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} -- can't happen
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
68 gcd-gt zero zero (suc (suc j)) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = record { factor = factor j0f ; is-factor = ifk0 j0 k j0f j0=0 }
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
69 gcd-gt zero (suc i0) (suc (suc j)) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
70 gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k (decf i0f) i0f (decf i0f)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
71 record { factor = factor jf ; remain = remain jf ; is-factor = {!!} } i0=0 {!!} {!!} {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
72 gcd-gt (suc zero) i0 zero j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
73 gcd-gt (suc (suc i)) i0 zero zero k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!}
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
74 gcd-gt (suc (suc i)) i0 zero (suc j0) k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 =
166
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
75 gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k (decf if) {!!} (decf jf) j0f j0=0 {!!} {!!} {!!}
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
76 gcd-gt (suc zero) i0 (suc j) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 =
166
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
77 gcd-gt zero i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 {!!} {!!}
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
78 gcd-gt (suc (suc i)) i0 (suc j) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 =
166
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
79 gcd-gt (suc i) i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 {!!} {!!}
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
80
145
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
81 -- gcd26 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n m ≡ gcd (n - m) m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
82 -- gcd27 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n k ≡ k → k ≤ n
143
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
83
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
84 gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
85 gcd22 zero i0 zero o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
86 gcd22 zero i0 (suc o) o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
87 gcd22 (suc i) i0 zero o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
88 gcd22 (suc i) i0 (suc o) o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
89
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
90 gcd20 : (i : ℕ) → gcd i 0 ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
91 gcd20 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
92 gcd20 (suc i) = gcd201 (suc i) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
93 gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
94 gcd201 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
95 gcd201 (suc zero) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
96 gcd201 (suc (suc i)) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
97
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
98 gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
99 gcdmm zero m with <-cmp m m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
100 ... | tri< a ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
101 ... | tri≈ ¬a refl ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
102 ... | tri> ¬a ¬b c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
103 gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
104
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
105 gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
106 gcdsym2 i j with <-cmp i j | <-cmp j i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
107 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
108 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
109 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
110 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
111 ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
112 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
113 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
114 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
115 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
116 gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
117 gcdsym1 zero zero zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
118 gcdsym1 zero zero zero (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
119 gcdsym1 zero (suc i0) zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
120 gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
121 gcdsym1 zero zero (suc zero) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
122 gcdsym1 zero zero (suc (suc j)) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
123 gcdsym1 zero (suc i0) (suc zero) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
124 gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
125 gcdsym1 (suc zero) i0 zero j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
126 gcdsym1 (suc (suc i)) i0 zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
127 gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
128 gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
129
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
130 gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
131 gcdsym {n} {m} = gcdsym1 n n m m
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
132
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
133 gcd11 : ( i : ℕ ) → gcd i i ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
134 gcd11 i = gcdmm i i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
135
155
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
136 gcd203 : (i : ℕ) → gcd1 (suc i) (suc i) i i ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
137 gcd203 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
138 gcd203 (suc i) = gcd205 (suc i) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
139 gcd205 : (j : ℕ) → gcd1 (suc j) (suc (suc i)) j (suc i) ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
140 gcd205 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
141 gcd205 (suc j) = subst (λ k → k ≡ 1) (gcd22 (suc j) (suc (suc i)) j (suc i)) (gcd205 j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
142 gcd204 : (i : ℕ) → gcd1 1 1 i i ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
143 gcd204 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
144 gcd204 (suc zero) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
145 gcd204 (suc (suc zero)) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
146 gcd204 (suc (suc (suc i))) = gcd204 (suc (suc i))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
147
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
148 gcd2 : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j
155
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
149 gcd2 i j = gcd200 i i j j refl refl where
153
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
150 gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
151 gcd202 zero j1 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
152 gcd202 (suc i) j1 = cong suc (gcd202 i j1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
153 gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
154 gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
155 gcd201 i i0 j j0 (suc j1) = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
156 gcd1 (i + suc j1) (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
157 gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
158 gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
159 gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning
155
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
160 gcd200 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
161 gcd200 i .i zero .0 refl refl = subst (λ k → gcd1 k k zero zero ≡ gcd1 i i zero zero ) (+-comm zero i) refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
162 gcd200 (suc (suc i)) i0 (suc j) (suc j0) i=i0 j=j0 = gcd201 (suc (suc i)) i0 j (suc j0) (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
163 gcd200 zero zero (suc zero) .1 i=i0 refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
164 gcd200 zero zero (suc (suc j)) .(suc (suc j)) i=i0 refl = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
165 gcd1 (zero + suc (suc j)) (zero + suc (suc j)) (suc (suc j)) (suc (suc j)) ≡⟨ gcdmm (suc (suc j)) (suc (suc j)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
166 suc (suc j) ≡⟨ sym (gcd20 (suc (suc j))) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
167 gcd1 zero zero (suc (suc j)) (suc (suc j)) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
168 gcd200 zero (suc i0) (suc j) .(suc j) () refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
169 gcd200 (suc zero) .1 (suc j) .(suc j) refl refl = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
170 gcd1 (1 + suc j) (1 + suc j) (suc j) (suc j) ≡⟨ gcd203 (suc j) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
171 1 ≡⟨ sym ( gcd204 (suc j)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
172 gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
173 gcd200 (suc (suc i)) i0 (suc j) zero i=i0 ()
154
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
174
159
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
175 gcd52 : {i : ℕ } → 1 < suc (suc i)
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
176 gcd52 {zero} = a<sa
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
177 gcd52 {suc i} = <-trans (gcd52 {i}) a<sa
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
178
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
179 gcd50 : (i i0 j j0 : ℕ) → 1 < i0 → i ≤ i0 → j ≤ j0 → gcd1 i i0 j j0 ≤ i0
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
180 gcd50 zero i0 zero j0 0<i i<i0 j<j0 with <-cmp i0 j0
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
181 ... | tri< a ¬b ¬c = ≤-refl
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
182 ... | tri≈ ¬a refl ¬c = ≤-refl
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
183 ... | tri> ¬a ¬b c = ≤-trans refl-≤s c
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
184 gcd50 zero (suc i0) (suc zero) j0 0<i i<i0 j<j0 = gcd51 0<i where
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
185 gcd51 : 1 < suc i0 → gcd1 zero (suc i0) 1 j0 ≤ suc i0
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
186 gcd51 1<i = ≤to< 1<i
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
187 gcd50 zero (suc i0) (suc (suc j)) j0 0<i i<i0 j<j0 = gcd50 i0 (suc i0) (suc j) (suc (suc j)) 0<i refl-≤s refl-≤s
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
188 gcd50 (suc zero) i0 zero j0 0<i i<i0 j<j0 = ≤to< 0<i
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
189 gcd50 (suc (suc i)) i0 zero zero 0<i i<i0 j<j0 = ≤-refl
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
190 gcd50 (suc (suc i)) i0 zero (suc j0) 0<i i<i0 j<j0 = ≤-trans (gcd50 (suc i) (suc (suc i)) j0 (suc j0) gcd52 refl-≤s refl-≤s) i<i0
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
191 gcd50 (suc i) i0 (suc j) j0 0<i i<i0 j<j0 = subst (λ k → k ≤ i0 ) (sym (gcd22 i i0 j j0))
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
192 (gcd50 i i0 j j0 0<i (≤-trans refl-≤s i<i0) (≤-trans refl-≤s j<j0))
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
193
156
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 155
diff changeset
194 gcd5 : ( n k : ℕ ) → 1 < n → gcd n k ≤ n
159
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
195 gcd5 n k 0<n = gcd50 n n k k 0<n ≤-refl ≤-refl
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
196
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
197 gcd6 : ( n k : ℕ ) → 1 < n → gcd k n ≤ n
5530b3789e0c add even
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
198 gcd6 n k 1<n = subst (λ m → m ≤ n) (gcdsym {n} {k}) (gcd5 n k 1<n)
154
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
199
156
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 155
diff changeset
200 gcd4 : ( n k : ℕ ) → 1 < n → gcd n k ≡ k → k ≤ n
158
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 157
diff changeset
201 gcd4 n k 1<n eq = subst (λ m → m ≤ n ) eq (gcd5 n k 1<n)
156
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 155
diff changeset
202
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
203 gcdmul+1 : ( m n : ℕ ) → gcd (m * n + 1) n ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
204 gcdmul+1 zero n = gcd204 n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
205 gcdmul+1 (suc m) n = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
206 gcd (suc m * n + 1) n ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
207 gcd (n + m * n + 1) n ≡⟨ cong (λ k → gcd k n ) (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
208 n + m * n + 1 ≡⟨ cong (λ k → k + 1) (+-comm n _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
209 m * n + n + 1 ≡⟨ +-assoc (m * n) _ _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
210 m * n + (n + 1) ≡⟨ cong (λ k → m * n + k) (+-comm n _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
211 m * n + (1 + n) ≡⟨ sym ( +-assoc (m * n) _ _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
212 m * n + 1 + n ∎
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
213 ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
214 gcd (m * n + 1 + n) n ≡⟨ gcd2 (m * n + 1) n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
215 gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
216 1 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
217