annotate agda/gcd.agda @ 154:ba7d4cc92e60

... gcd (i + j) j ≡ gcd i j
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 02 Jan 2021 04:29:20 +0900
parents d78fc1951c26
children 4b6063ad6de2
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
1 {-# OPTIONS --allow-unsolved-metas #-}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
2 module gcd where
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
4 open import Data.Nat
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
5 open import Data.Nat.Properties
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Empty
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
7 open import Data.Unit using (⊤ ; tt)
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Relation.Binary.PropositionalEquality
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
10 open import Relation.Binary.Definitions
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
11 open import nat
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
12 open import logic
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 even : (n : ℕ ) → Set
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
15 even zero = ⊤
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
16 even (suc zero) = ⊥
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
17 even (suc (suc n)) = even n
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 even? : (n : ℕ ) → Dec ( even n )
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
20 even? zero = yes tt
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
21 even? (suc zero) = no (λ ())
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
22 even? (suc (suc n)) = even? n
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
23
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
24 n+even : {n m : ℕ } → even n → even m → even ( n + m )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
25 n+even {zero} {zero} tt tt = tt
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
26 n+even {zero} {suc m} tt em = em
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
27 n+even {suc (suc n)} {m} en em = n+even {n} {m} en em
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
28
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
29 n*even : {m n : ℕ } → even n → even ( m * n )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
30 n*even {zero} {n} en = tt
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
31 n*even {suc m} {n} en = n+even {n} {m * n} en (n*even {m} {n} en)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
32
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
33 even*n : {n m : ℕ } → even n → even ( n * m )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
34 even*n {n} {m} en = subst even (*-comm m n) (n*even {m} {n} en)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
35
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
36 gcd1 : ( i i0 j j0 : ℕ ) → ℕ
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
37 gcd1 zero i0 zero j0 with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
38 ... | tri< a ¬b ¬c = j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
39 ... | tri≈ ¬a refl ¬c = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
40 ... | tri> ¬a ¬b c = i0
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
41 gcd1 zero i0 (suc zero) j0 = 1
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
42 gcd1 zero zero (suc (suc j)) j0 = j0
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
43 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
44 gcd1 (suc zero) i0 zero j0 = 1
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
45 gcd1 (suc (suc i)) i0 zero zero = i0
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
46 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
47 gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
48
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
49 gcd : ( i j : ℕ ) → ℕ
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
50 gcd i j = gcd1 i i j j
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
52 even→gcd=2 : {n : ℕ} → even n → n > 0 → gcd n 2 ≡ 2
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
53 even→gcd=2 {suc (suc zero)} en (s≤s z≤n) = refl
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
54 even→gcd=2 {suc (suc (suc (suc n)))} en (s≤s z≤n) = begin
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
55 gcd (suc (suc (suc (suc n)))) 2 ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
56 gcd (suc (suc n)) 2 ≡⟨ even→gcd=2 {suc (suc n)} en (s≤s z≤n) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
57 2 ∎ where open ≡-Reasoning
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58
145
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
59 -- gcd26 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n m ≡ gcd (n - m) m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
60 -- gcd27 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n k ≡ k → k ≤ n
143
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
61
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
62 gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
63 gcd22 zero i0 zero o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
64 gcd22 zero i0 (suc o) o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
65 gcd22 (suc i) i0 zero o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
66 gcd22 (suc i) i0 (suc o) o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
67
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
68 gcd20 : (i : ℕ) → gcd i 0 ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
69 gcd20 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
70 gcd20 (suc i) = gcd201 (suc i) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
71 gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
72 gcd201 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
73 gcd201 (suc zero) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
74 gcd201 (suc (suc i)) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
75
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
76 gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
77 gcdmm zero m with <-cmp m m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
78 ... | tri< a ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
79 ... | tri≈ ¬a refl ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
80 ... | tri> ¬a ¬b c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
81 gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
82
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
83 record Comp ( m n : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
84 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
85 non-1 : 1 < m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
86 comp : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
87 is-comp : n * comp ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
88
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
89 gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
90 gcdsym2 i j with <-cmp i j | <-cmp j i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
91 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
92 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
93 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
94 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
95 ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
96 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
97 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
98 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
99 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
100 gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
101 gcdsym1 zero zero zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
102 gcdsym1 zero zero zero (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
103 gcdsym1 zero (suc i0) zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
104 gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
105 gcdsym1 zero zero (suc zero) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
106 gcdsym1 zero zero (suc (suc j)) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
107 gcdsym1 zero (suc i0) (suc zero) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
108 gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
109 gcdsym1 (suc zero) i0 zero j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
110 gcdsym1 (suc (suc i)) i0 zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
111 gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
112 gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
113
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
114 gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
115 gcdsym {n} {m} = gcdsym1 n n m m
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
116
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
117 gcd11 : ( i : ℕ ) → gcd i i ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
118 gcd11 i = gcdmm i i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
119
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
120 gcd2 : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j
153
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
121 gcd2 i j = gcd200 i i j j where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
122 gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
123 gcd202 zero j1 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
124 gcd202 (suc i) j1 = cong suc (gcd202 i j1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
125 gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
126 gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
127 gcd201 i i0 j j0 (suc j1) = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
128 gcd1 (i + suc j1) (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
129 gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
130 gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
131 gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
132 gcd200 : (i i0 j j0 : ℕ) → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
133 gcd200 i i0 zero j0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
134 gcd200 (suc (suc i)) i0 (suc j) (suc j0) = gcd201 (suc (suc i)) i0 j (suc j0) (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
135 gcd200 zero zero (suc zero) j0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
136 gcd200 zero zero (suc (suc j)) j0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
137 gcd200 zero (suc i0) (suc j) j0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
138 gcd200 (suc zero) i0 (suc j) j0 = {!!}
154
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
139 gcd200 (suc (suc i)) i0 (suc j) zero = {!!}
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
140
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
141 gcd4 : ( n k : ℕ ) → gcd n k ≡ k → k ≤ n
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
142 gcd4 n k gn = gcd40 n n k k gn where
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
143 gcd40 : (i i0 j j0 : ℕ) → gcd1 i i0 j j0 ≡ j0 → j0 ≤ i0
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
144 gcd40 zero i0 zero j0 gn = {!!}
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
145 gcd40 zero i0 (suc j) j0 gn = {!!}
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
146 gcd40 (suc i) i0 zero j0 gn = {!!}
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
147 gcd40 (suc i) i0 (suc j) j0 gn = gcd40 i i0 j j0 (subst (λ k → k ≡ j0) (gcd22 i i0 j j0) gn)
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
148
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
149 gcd3 : ( n k : ℕ ) → n ≤ k + k → gcd n k ≡ k → n ≡ k
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
150 gcd3 n k n<2k gn = {!!}
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
151
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
152 gcd23 : ( n m k : ℕ) → gcd n k ≡ k → gcd m k ≡ k → k ≤ gcd n m
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
153 gcd23 = {!!}
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
154
142
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
155 gcd24 : { n m k : ℕ} → n > 1 → m > 1 → k > 1 → gcd n k ≡ k → gcd m k ≡ k → ¬ ( gcd n m ≡ 1 )
154
ba7d4cc92e60 ... gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
156 gcd24 {n} {m} {k} 1<n 1<m 1<k gn gm gnm = ⊥-elim ( nat-≡< (sym gnm) (≤-trans 1<k (gcd23 n m k gn gm )))
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
157
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
158 record Even (i : ℕ) : Set where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
159 field
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
160 j : ℕ
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
161 is-twice : i ≡ 2 * j
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
162
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
163 e2 : (i : ℕ) → even i → Even i
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
164 e2 zero en = record { j = 0 ; is-twice = refl }
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
165 e2 (suc (suc i)) en = record { j = suc (Even.j (e2 i en )) ; is-twice = e21 } where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
166 e21 : suc (suc i) ≡ 2 * suc (Even.j (e2 i en))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
167 e21 = begin
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
168 suc (suc i) ≡⟨ cong (λ k → suc (suc k)) (Even.is-twice (e2 i en)) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
169 suc (suc (2 * Even.j (e2 i en))) ≡⟨ sym (*-distribˡ-+ 2 1 _) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
170 2 * suc (Even.j (e2 i en)) ∎ where open ≡-Reasoning
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
171
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
172 record Odd (i : ℕ) : Set where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
173 field
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
174 j : ℕ
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
175 is-twice : i ≡ suc (2 * j )
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
176
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
177 odd2 : (i : ℕ) → ¬ even i → even (suc i)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
178 odd2 zero ne = ⊥-elim ( ne tt )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
179 odd2 (suc zero) ne = tt
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
180 odd2 (suc (suc i)) ne = odd2 i ne
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
181
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
182 odd3 : (i : ℕ) → ¬ even i → Odd i
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
183 odd3 zero ne = ⊥-elim ( ne tt )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
184 odd3 (suc zero) ne = record { j = 0 ; is-twice = refl }
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
185 odd3 (suc (suc i)) ne = record { j = Even.j (e2 (suc i) (odd2 i ne)) ; is-twice = odd31 } where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
186 odd31 : suc (suc i) ≡ suc (2 * Even.j (e2 (suc i) (odd2 i ne)))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
187 odd31 = begin
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
188 suc (suc i) ≡⟨ cong suc (Even.is-twice (e2 (suc i) (odd2 i ne))) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
189 suc (2 * (Even.j (e2 (suc i) (odd2 i ne)))) ∎ where open ≡-Reasoning
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
190
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
191 odd4 : (i : ℕ) → even i → ¬ even ( suc i )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
192 odd4 (suc (suc i)) en en1 = odd4 i en en1
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
193
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
194 even^2 : {n : ℕ} → even ( n * n ) → even n
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
195 even^2 {n} en with even? n
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
196 ... | yes y = y
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
197 ... | no ne = ⊥-elim ( odd4 ((2 * m) + 2 * m * suc (2 * m)) (n+even {2 * m} {2 * m * suc (2 * m)} ee3 ee4) (subst (λ k → even k) ee2 en )) where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
198 m : ℕ
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
199 m = Odd.j ( odd3 n ne )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
200 ee3 : even (2 * m)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
201 ee3 = subst (λ k → even k ) (*-comm m 2) (n*even {m} {2} tt )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
202 ee4 : even ((2 * m) * suc (2 * m))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
203 ee4 = even*n {(2 * m)} {suc (2 * m)} (even*n {2} {m} tt )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
204 ee2 : n * n ≡ suc (2 * m) + ((2 * m) * (suc (2 * m) ))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
205 ee2 = begin n * n ≡⟨ cong ( λ k → k * k) (Odd.is-twice (odd3 n ne)) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
206 suc (2 * m) * suc (2 * m) ≡⟨ *-distribʳ-+ (suc (2 * m)) 1 ((2 * m) ) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
207 (1 * suc (2 * m)) + 2 * m * suc (2 * m) ≡⟨ cong (λ k → k + 2 * m * suc (2 * m)) (begin
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
208 suc m + 1 * m + 0 * (suc m + 1 * m ) ≡⟨ +-comm (suc m + 1 * m) 0 ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
209 suc m + 1 * m ≡⟨⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
210 suc (2 * m)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
211 ∎) ⟩ suc (2 * m) + 2 * m * suc (2 * m) ∎ where open ≡-Reasoning
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
212
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
213 open import nat
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
214
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
215 e3 : {i j : ℕ } → 2 * i ≡ 2 * j → i ≡ j
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
216 e3 {zero} {zero} refl = refl
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
217 e3 {suc x} {suc y} eq with <-cmp x y
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
218 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< eq (s≤s (<-trans (<-plus a) (<-plus-0 (s≤s (<-plus a ))))))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
219 ... | tri≈ ¬a b ¬c = cong suc b
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
220 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (s≤s (<-trans (<-plus c) (<-plus-0 (s≤s (<-plus c ))))))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
221