annotate agda/gcd.agda @ 152:f42008080919

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 02 Jan 2021 01:59:47 +0900
parents 9e16cbec717b
children d78fc1951c26
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
1 {-# OPTIONS --allow-unsolved-metas #-}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
2 module gcd where
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
4 open import Data.Nat
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
5 open import Data.Nat.Properties
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Empty
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
7 open import Data.Unit using (⊤ ; tt)
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Relation.Binary.PropositionalEquality
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
10 open import Relation.Binary.Definitions
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
11 open import nat
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
12 open import logic
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 even : (n : ℕ ) → Set
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
15 even zero = ⊤
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
16 even (suc zero) = ⊥
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
17 even (suc (suc n)) = even n
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 even? : (n : ℕ ) → Dec ( even n )
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
20 even? zero = yes tt
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
21 even? (suc zero) = no (λ ())
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
22 even? (suc (suc n)) = even? n
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
23
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
24 n+even : {n m : ℕ } → even n → even m → even ( n + m )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
25 n+even {zero} {zero} tt tt = tt
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
26 n+even {zero} {suc m} tt em = em
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
27 n+even {suc (suc n)} {m} en em = n+even {n} {m} en em
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
28
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
29 n*even : {m n : ℕ } → even n → even ( m * n )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
30 n*even {zero} {n} en = tt
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
31 n*even {suc m} {n} en = n+even {n} {m * n} en (n*even {m} {n} en)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
32
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
33 even*n : {n m : ℕ } → even n → even ( n * m )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
34 even*n {n} {m} en = subst even (*-comm m n) (n*even {m} {n} en)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
35
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
36 gcd1 : ( i i0 j j0 : ℕ ) → ℕ
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
37 gcd1 zero i0 zero j0 with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
38 ... | tri< a ¬b ¬c = j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
39 ... | tri≈ ¬a refl ¬c = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
40 ... | tri> ¬a ¬b c = i0
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
41 gcd1 zero i0 (suc zero) j0 = 1
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
42 gcd1 zero zero (suc (suc j)) j0 = j0
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
43 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
44 gcd1 (suc zero) i0 zero j0 = 1
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
45 gcd1 (suc (suc i)) i0 zero zero = i0
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
46 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
47 gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
48
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
49 gcd : ( i j : ℕ ) → ℕ
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
50 gcd i j = gcd1 i i j j
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
52 even→gcd=2 : {n : ℕ} → even n → n > 0 → gcd n 2 ≡ 2
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
53 even→gcd=2 {suc (suc zero)} en (s≤s z≤n) = refl
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
54 even→gcd=2 {suc (suc (suc (suc n)))} en (s≤s z≤n) = begin
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
55 gcd (suc (suc (suc (suc n)))) 2 ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
56 gcd (suc (suc n)) 2 ≡⟨ even→gcd=2 {suc (suc n)} en (s≤s z≤n) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
57 2 ∎ where open ≡-Reasoning
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58
145
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
59 -- gcd26 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n m ≡ gcd (n - m) m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
60 -- gcd27 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n k ≡ k → k ≤ n
143
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
61
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
62 gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
63 gcd22 zero i0 zero o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
64 gcd22 zero i0 (suc o) o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
65 gcd22 (suc i) i0 zero o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
66 gcd22 (suc i) i0 (suc o) o0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
67
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
68 gcd20 : (i : ℕ) → gcd i 0 ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
69 gcd20 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
70 gcd20 (suc i) = gcd201 (suc i) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
71 gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
72 gcd201 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
73 gcd201 (suc zero) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
74 gcd201 (suc (suc i)) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
75
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
76 gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
77 gcdmm zero m with <-cmp m m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
78 ... | tri< a ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
79 ... | tri≈ ¬a refl ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
80 ... | tri> ¬a ¬b c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
81 gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
82
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
83 record Comp ( m n : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
84 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
85 non-1 : 1 < m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
86 comp : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
87 is-comp : n * comp ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
88
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
89 gcd27 : (n m i : ℕ) → 1 < m → gcd n i ≡ m → Comp m n ∨ Comp m i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
90 gcd27 n m i 1<m gn = gcd271 n n i i gn where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
91 gcd271 : (n n0 i i0 : ℕ ) → gcd1 n n0 i i0 ≡ m → Comp m n0 ∨ Comp m i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
92 gcd271 zero n0 zero i0 eq with <-cmp n0 i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
93 ... | tri< a ¬b ¬c = case2 (record { non-1 = 1<m ; comp = 1 ; is-comp = subst (λ k → k ≡ m) {!!} eq })
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
94 ... | tri≈ ¬a refl ¬c = case1 (record { non-1 = 1<m ; comp = 1 ; is-comp = subst (λ k → k ≡ m) {!!} eq })
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
95 ... | tri> ¬a ¬b c = case1 (record { non-1 = 1<m ; comp = 1 ; is-comp = subst (λ k → k ≡ m) {!!} eq })
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
96 gcd271 zero n0 (suc zero) i0 eq = ⊥-elim ( nat-≡< eq 1<m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
97 gcd271 zero zero (suc (suc i)) i0 eq = case2 (record { non-1 = 1<m ; comp = 1 ; is-comp = subst (λ k → k ≡ m) {!!} eq })
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
98 gcd271 zero (suc n0) (suc (suc i)) i0 eq with gcd271 n0 (suc n0) (suc i) (suc (suc i)) eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
99 ... | case1 t = case1 t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
100 -- t : Comp m (suc (suc i)), (suc n0) + (suc (suc i)) ≡ i0
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
101 ... | case2 t = case1 (gcd272 t) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
102 gcd272 : Comp m (suc (suc i)) → Comp m (suc n0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
103 gcd272 = {!!}
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
104 gcd271 (suc zero) n0 zero i0 eq = ⊥-elim ( nat-≡< eq 1<m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
105 gcd271 (suc (suc n)) n0 zero zero eq = case2 (record { non-1 = 1<m ; comp = n0 ; is-comp = subst (λ k → k ≡ m) {!!} eq })
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
106 gcd271 (suc (suc n)) n0 zero (suc i0) eq = {!!}
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
107 gcd271 (suc n) n0 (suc i) i0 eq = gcd271 n n0 i i0 (trans (sym (gcd22 n n0 i i0)) eq )
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
108
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
109 gcd26 : (n m i : ℕ) → 1 < n → 1 < m → gcd n i ≡ m → ¬ ( gcd n m ≡ 1 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
110 gcd26 n m i 1<n 1<m gi g1 = gcd261 n n m m i i 1<n 1<m gi g1 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
111 gcd261 : (n n0 m m0 i i0 : ℕ) → 1 < n → 1 < m0 → gcd1 n n0 i i0 ≡ m0 → ¬ ( gcd1 n n0 m m0 ≡ 1 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
112 gcd261 zero n0 m m0 i i0 () 1<m gi g1
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
113 -- gi : gcd1 (suc n) n0 zero i0 ≡ m0
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
114 -- g1 : gcd1 (suc n) n0 m m0 ≡ 1
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
115 gcd261 (suc zero) n0 m m0 zero i0 1<n 1<m gi g1 = ⊥-elim ( nat-≡< gi 1<m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
116 gcd261 (suc (suc n)) n0 zero m0 zero zero 1<n 1<m gi g1 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
117 gcd261 (suc (suc n)) n0 zero m0 zero (suc i0) 1<n 1<m gi g1 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
118 gcd261 (suc (suc n)) n0 (suc zero) m0 zero i0 1<n 1<m gi g1 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
119 gcd261 (suc (suc n)) n0 (suc (suc m)) m0 zero zero 1<n 1<m gi g1 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
120 gcd261 (suc (suc n)) n0 (suc (suc m)) m0 zero (suc i0) 1<n 1<m gi g1 = {!!}
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
121 -- gi : gcd1 (suc n) n0 (suc i) i0 ≡ m0
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
122 -- g1 : gcd1 (suc n) n0 zero m0 ≡ 1
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
123 gcd261 (suc n) n0 zero m0 (suc i) i0 1<n 1<m gi g1 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
124 gcd261 (suc zero) n0 (suc m) m0 (suc i) i0 1<n 1<m gi g1 = ⊥-elim ( nat-<≡ 1<n )
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
125 gcd261 (suc (suc zero)) n0 (suc m) m0 (suc zero) i0 1<n 1<m gi g1 = ⊥-elim ( nat-≡< gi 1<m )
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
126 -- gi : gcd1 0 n0 i i0 ≡ m0
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
127 gcd261 (suc (suc zero)) n0 (suc zero) m0 (suc (suc i)) i0 1<n 1<m gi refl = {!!}
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
128 -- gi : gcd1 0 n0 i i0 ≡ m0
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
129 -- g1 : gcd1 0 n0 m m0 ≡ 1
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
130 gcd261 (suc (suc zero)) n0 (suc (suc m)) m0 (suc (suc i)) i0 1<n 1<m gi g1 = {!!}
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
131 gcd261 (suc (suc (suc n))) n0 (suc m) m0 (suc i) i0 1<n 1<m gi g1 =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
132 gcd261 (suc (suc n)) n0 m m0 i i0 (s≤s (s≤s z≤n)) 1<m gi g1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
133
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
134 gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
135 gcdsym2 i j with <-cmp i j | <-cmp j i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
136 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
137 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
138 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
139 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
140 ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
141 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
142 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
143 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
144 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
145 gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
146 gcdsym1 zero zero zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
147 gcdsym1 zero zero zero (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
148 gcdsym1 zero (suc i0) zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
149 gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
150 gcdsym1 zero zero (suc zero) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
151 gcdsym1 zero zero (suc (suc j)) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
152 gcdsym1 zero (suc i0) (suc zero) j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
153 gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
154 gcdsym1 (suc zero) i0 zero j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
155 gcdsym1 (suc (suc i)) i0 zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
156 gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
157 gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
158
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
159 gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
160 gcdsym {n} {m} = gcdsym1 n n m m
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
161
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
162 gcd11 : ( i : ℕ ) → gcd i i ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
163 gcd11 i = gcdmm i i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
165 gcd2 : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
166 gcd2 zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
167 gcd2 zero (suc j) = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
168 gcd (zero + suc j) (suc j) ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
169 gcd (suc j) (suc j) ≡⟨ gcd11 (suc j) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
170 suc j ≡⟨ sym (gcd20 (suc j)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
171 gcd (suc j) zero ≡⟨ gcdsym {suc j} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
172 gcd zero (suc j) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
173 gcd2 (suc i) zero = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
174 gcd (suc i + zero) zero ≡⟨ cong (λ k → gcd k zero) (+-comm (suc i) _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
175 gcd (suc i) zero ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
176 gcd2 (suc i) (suc j) = gcd200 (suc i) (suc i) (suc j) (suc j) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
177 gcd200 : (i i0 j j0 : ℕ) → gcd1 (i + j0) (i0 + j0) j j0 ≡ gcd1 i i0 j j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
178 gcd200 i i0 j j0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
179
142
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
180 gcd24 : { n m k : ℕ} → n > 1 → m > 1 → k > 1 → gcd n k ≡ k → gcd m k ≡ k → ¬ ( gcd n m ≡ 1 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
181 gcd24 {n} {m} {k} 1<n 1<m 1<k gn gm gnm = gcd21 n n m m k k 1<n 1<m 1<k gn gm gnm where
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
182 gcd23 : {i0 j0 : ℕ } → 1 < i0 → 1 < j0 → 1 < gcd1 zero i0 zero j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
183 gcd23 {i0} {j0} 1<i 1<j with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
184 ... | tri< a ¬b ¬c = 1<j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
185 ... | tri≈ ¬a refl ¬c = 1<i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
186 ... | tri> ¬a ¬b c = 1<i
143
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
187 1<ss : {j : ℕ} → 1 < suc (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
188 1<ss = s≤s (s≤s z≤n)
142
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
189 gcd21 : ( i i0 j j0 o o0 : ℕ ) → 1 < i0 → 1 < j0 → 1 < o0 → gcd1 i i0 o o0 ≡ k → gcd1 j j0 o o0 ≡ k → gcd1 i i0 j j0 ≡ 1 → ⊥
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
190 gcd21 zero i0 zero j0 o o0 1<i 1<j 1<o refl gm gnm = nat-≡< (sym gnm) (gcd23 1<i 1<j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
191 gcd21 zero i0 (suc j) j0 zero o0 1<i 1<j 1<o refl gm gnm = gcd25 i0 o0 j j0 1<o 1<i 1<k gm (subst (λ k → k ≡ 1) (gcdsym1 zero _ (suc j) _) gnm) where
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
192 -- gcd1 (suc j) (suc (suc j)) (suc o0) (suc (suc o0)) ≡ suc (suc i0) , gcd1 (suc j) (suc (suc j)) (suc i0) (suc (suc i0)) ≡ 1
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
193 gcd25 : (i0 o0 j j0 : ℕ) → 1 < o0 → 1 < i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
194 → 1 < gcd1 zero i0 zero o0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
195 → ( gm : gcd1 (suc j) j0 zero o0 ≡ gcd1 zero i0 zero o0 ) → (gnm : gcd1 (suc j) j0 zero i0 ≡ 1) → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
196 gcd25 i0 o0 zero j0 1<o 1<i 1<k gm refl with <-cmp i0 o0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
197 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< gm 1<o )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
198 ... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< gm 1<o )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
199 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< gm 1<i )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
200 -- gm : gcd1 (suc j) (suc (suc j)) (suc o0) (suc (suc o0)) ≡ (gcd1 zero (suc i0) zero (suc (suc o0))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
201 -- gcd1 j (suc (suc j)) o0 (suc (suc o0))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
202 -- gnm : gcd1 (suc j) (suc (suc j)) i0 (suc i0) ≡ 1
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
203 gcd25 i0 (suc zero) (suc j) j0 1<o 1<i 1<k gm gnm = {!!} -- ⊥-elim ( nat-≤> (subst (λ k → k ≤ 1 ) gm (gcd27 (suc j) (suc (suc j)))) 1<k )
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
204 gcd25 (suc zero) (suc (suc o0)) (suc j) j0 1<o 1<i 1<k gm gnm = {!!}
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
205 -- (suc (suc i0)) > (suc (suc o0)) → gm = gnm → (suc (suc i0)) ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
206 -- (suc (suc i0)) < (suc (suc o0)) → ? gcd1 (suc j) (suc (suc j)) (suc o0) (suc (suc o0)) ≡ (suc (suc o0))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
207 -- gcd1 (suc j) (suc (suc j)) (suc i0) (suc (suc i0)) ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
208 gcd25 (suc (suc i0)) (suc (suc o0)) (suc j) j0 1<o 1<i 1<k gm gnm with <-cmp (suc (suc i0)) (suc (suc o0))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
209 ... | tri< a ¬b ¬c = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
210 ... | tri≈ ¬a b ¬c = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
211 ... | tri> ¬a ¬b c = gcd26 {!!} {!!} {!!} {!!} {!!} {!!} {!!}
146
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
212 gcd21 zero i0 (suc j) j0 (suc zero) o0 1<i 1<j 1<o refl gm gnm = nat-<≡ 1<k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 145
diff changeset
213 gcd21 zero (suc i0) (suc j) j0 (suc (suc o)) o0 1<i 1<j 1<o gn gm gnm =
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
214 gcd21 i0 {!!} (suc j) j0 (suc o) (suc (suc o)) 1<i 1<j {!!} gn {!!} {!!}
145
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
215 gcd21 (suc i) i0 zero j0 o o0 1<i 1<j 1<o gn gm gnm = {!!}
142
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
216 gcd21 (suc i) i0 (suc j) j0 zero o0 1<i 1<j 1<o gn gm gnm = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
217 gcd21 (suc i) i0 (suc j) j0 (suc o) o0 1<i 1<j 1<o gn gm gnm =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
218 gcd21 i i0 j j0 o o0 1<i 1<j 1<o (subst (λ m → m ≡ k) (gcd22 i i0 _ _ ) gn)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
219 (subst (λ m → m ≡ k) (gcd22 j j0 _ _ ) gm) (subst (λ k → k ≡ 1) (gcd22 i i0 _ _ ) gnm)
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
220
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
221 record Even (i : ℕ) : Set where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
222 field
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
223 j : ℕ
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
224 is-twice : i ≡ 2 * j
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
225
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
226 e2 : (i : ℕ) → even i → Even i
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
227 e2 zero en = record { j = 0 ; is-twice = refl }
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
228 e2 (suc (suc i)) en = record { j = suc (Even.j (e2 i en )) ; is-twice = e21 } where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
229 e21 : suc (suc i) ≡ 2 * suc (Even.j (e2 i en))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
230 e21 = begin
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
231 suc (suc i) ≡⟨ cong (λ k → suc (suc k)) (Even.is-twice (e2 i en)) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
232 suc (suc (2 * Even.j (e2 i en))) ≡⟨ sym (*-distribˡ-+ 2 1 _) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
233 2 * suc (Even.j (e2 i en)) ∎ where open ≡-Reasoning
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
234
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
235 record Odd (i : ℕ) : Set where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
236 field
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
237 j : ℕ
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
238 is-twice : i ≡ suc (2 * j )
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
239
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
240 odd2 : (i : ℕ) → ¬ even i → even (suc i)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
241 odd2 zero ne = ⊥-elim ( ne tt )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
242 odd2 (suc zero) ne = tt
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
243 odd2 (suc (suc i)) ne = odd2 i ne
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
244
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
245 odd3 : (i : ℕ) → ¬ even i → Odd i
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
246 odd3 zero ne = ⊥-elim ( ne tt )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
247 odd3 (suc zero) ne = record { j = 0 ; is-twice = refl }
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
248 odd3 (suc (suc i)) ne = record { j = Even.j (e2 (suc i) (odd2 i ne)) ; is-twice = odd31 } where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
249 odd31 : suc (suc i) ≡ suc (2 * Even.j (e2 (suc i) (odd2 i ne)))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
250 odd31 = begin
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
251 suc (suc i) ≡⟨ cong suc (Even.is-twice (e2 (suc i) (odd2 i ne))) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
252 suc (2 * (Even.j (e2 (suc i) (odd2 i ne)))) ∎ where open ≡-Reasoning
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
253
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
254 odd4 : (i : ℕ) → even i → ¬ even ( suc i )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
255 odd4 (suc (suc i)) en en1 = odd4 i en en1
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
256
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
257 even^2 : {n : ℕ} → even ( n * n ) → even n
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
258 even^2 {n} en with even? n
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
259 ... | yes y = y
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
260 ... | no ne = ⊥-elim ( odd4 ((2 * m) + 2 * m * suc (2 * m)) (n+even {2 * m} {2 * m * suc (2 * m)} ee3 ee4) (subst (λ k → even k) ee2 en )) where
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
261 m : ℕ
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
262 m = Odd.j ( odd3 n ne )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
263 ee3 : even (2 * m)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
264 ee3 = subst (λ k → even k ) (*-comm m 2) (n*even {m} {2} tt )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
265 ee4 : even ((2 * m) * suc (2 * m))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
266 ee4 = even*n {(2 * m)} {suc (2 * m)} (even*n {2} {m} tt )
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
267 ee2 : n * n ≡ suc (2 * m) + ((2 * m) * (suc (2 * m) ))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
268 ee2 = begin n * n ≡⟨ cong ( λ k → k * k) (Odd.is-twice (odd3 n ne)) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
269 suc (2 * m) * suc (2 * m) ≡⟨ *-distribʳ-+ (suc (2 * m)) 1 ((2 * m) ) ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
270 (1 * suc (2 * m)) + 2 * m * suc (2 * m) ≡⟨ cong (λ k → k + 2 * m * suc (2 * m)) (begin
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
271 suc m + 1 * m + 0 * (suc m + 1 * m ) ≡⟨ +-comm (suc m + 1 * m) 0 ⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
272 suc m + 1 * m ≡⟨⟩
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
273 suc (2 * m)
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
274 ∎) ⟩ suc (2 * m) + 2 * m * suc (2 * m) ∎ where open ≡-Reasoning
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
275
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
276 open import nat
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
277
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
278 e3 : {i j : ℕ } → 2 * i ≡ 2 * j → i ≡ j
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
279 e3 {zero} {zero} refl = refl
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
280 e3 {suc x} {suc y} eq with <-cmp x y
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
281 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< eq (s≤s (<-trans (<-plus a) (<-plus-0 (s≤s (<-plus a ))))))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
282 ... | tri≈ ¬a b ¬c = cong suc b
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
283 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (s≤s (<-trans (<-plus c) (<-plus-0 (s≤s (<-plus c ))))))
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
284