Mercurial > hg > Members > kono > Proof > automaton
changeset 57:b34eb13b3fe8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 17 Oct 2019 20:00:26 +0900 |
parents | fe5304e06228 |
children | e28f755a8dd0 |
files | agda/chap0.agda agda/root2.agda |
diffstat | 2 files changed, 45 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/chap0.agda Thu Oct 17 15:11:39 2019 +0900 +++ b/agda/chap0.agda Thu Oct 17 20:00:26 2019 +0900 @@ -184,14 +184,15 @@ dgree-even : ( g : List ( ℕ × ℕ )) → sum-of-dgree g % 2 ≡ 0 dgree-even [] = refl -dgree-even ((e , e1) ∷ t) with dgree-even t -... | s = subst (λ k → k % 2 ≡ 0 ) (sym lemma)( even2 (sum-of-dgree t) s ) where - lemma : sum-of-dgree ((e , e1) ∷ t) ≡ sum-of-dgree t + 2 - lemma = begin - sum-of-dgree ((e , e1) ∷ t) - ≡⟨⟩ - 2 + sum-of-dgree t - ≡⟨ +-comm 2 _ ⟩ - sum-of-dgree t + 2 - ∎ where open ≡-Reasoning +dgree-even ((e , e1) ∷ t) = begin + sum-of-dgree ((e , e1) ∷ t) % 2 + ≡⟨⟩ + (2 + sum-of-dgree t ) % 2 + ≡⟨ cong ( λ k → k % 2 ) ( +-comm 2 (sum-of-dgree t) ) ⟩ + (sum-of-dgree t + 2) % 2 + ≡⟨ [a+n]%n≡a%n (sum-of-dgree t) _ ⟩ + sum-of-dgree t % 2 + ≡⟨ dgree-even t ⟩ + 0 + ∎ where open ≡-Reasoning
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/agda/root2.agda Thu Oct 17 20:00:26 2019 +0900 @@ -0,0 +1,34 @@ +module root2 where + +open import Data.Nat +open import Data.Empty +open import Relation.Nullary +open import Relation.Binary.PropositionalEquality +open import Data.Nat.DivMod + +even : (n : ℕ ) → Set +even n = n % 2 ≡ 0 + +even? : (n : ℕ ) → Dec ( even n ) +even? n with n % 2 +even? n | zero = yes refl +even? n | suc k = no ( λ () ) + +nn-even : {n : ℕ } → even n → even ( n * n ) +nn-even {n} eq = {!!} + +2-even : {n : ℕ } → even ( 2 * n ) +2-even {n} = {!!} + +even-2 : (n : ℕ ) → (n + 2) % 2 ≡ 0 → n % 2 ≡ 0 +even-2 0 refl = refl +even-2 1 () +even-2 (suc (suc n)) eq = {!!} -- trans ([a+n]%n≡a%n (suc (suc n)) _ ) eq -- [a+n]%n≡a%n : ∀ a n → (a + suc n) % suc n ≡ a % suc n + +even-half : (n : ℕ ) → even n → ℕ +even-half zero _ = zero +even-half (suc (suc n)) ev = {!!} -- 1 + even-half n (subst (λ k → k ≡ 0 ) {!!} {!!} ) + +root2-irrational : ( n m : ℕ ) → ¬ ( 2 * n * n ≡ m * m ) +root2-irrational n m eq = {!!} +