Mercurial > hg > Members > kono > Proof > automaton
comparison automaton-in-agda/src/omega-automaton.agda @ 330:407684f806e4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 16 Nov 2022 17:43:10 +0900 |
parents | ba0ae5de62d1 |
children | ce4e44cee2d3 |
comparison
equal
deleted
inserted
replaced
329:ba0ae5de62d1 | 330:407684f806e4 |
---|---|
69 ω-run-eq Ω Ω' q s (suc n) eq = begin | 69 ω-run-eq Ω Ω' q s (suc n) eq = begin |
70 ω-run Ω q s (suc n) ≡⟨⟩ | 70 ω-run Ω q s (suc n) ≡⟨⟩ |
71 δ Ω (ω-run Ω q s n) (s n) ≡⟨ cong₂ (λ j k → j k (s n) ) eq (ω-run-eq Ω Ω' q s n eq) ⟩ | 71 δ Ω (ω-run Ω q s n) (s n) ≡⟨ cong₂ (λ j k → j k (s n) ) eq (ω-run-eq Ω Ω' q s n eq) ⟩ |
72 δ Ω' (ω-run Ω' q s n) (s n) ≡⟨⟩ | 72 δ Ω' (ω-run Ω' q s n) (s n) ≡⟨⟩ |
73 ω-run Ω' q s (suc n) ∎ where open ≡-Reasoning | 73 ω-run Ω' q s (suc n) ∎ where open ≡-Reasoning |
74 | |
75 -- | |
76 -- <> [] p → ¬ [] <> ¬ p | |
77 -- | |
78 | |
74 | 79 |
75 B→M : { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) → Q → Buchi Ω S → ¬ ( Muller record { δ = δ Ω ; aend = λ q → not (aend Ω q)} S ) | 80 B→M : { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) → Q → Buchi Ω S → ¬ ( Muller record { δ = δ Ω ; aend = λ q → not (aend Ω q)} S ) |
76 B→M {Q} {Σ} Ω S q b m = ¬-bool bm04 bm02 where | 81 B→M {Q} {Σ} Ω S q b m = ¬-bool bm04 bm02 where |
77 q1 : Q | 82 q1 : Q |
78 q1 = ω-run Ω q S (from b + suc (next m (from b))) | 83 q1 = ω-run Ω q S (from b + suc (next m (from b))) |
88 not (not (aend Ω (ω-run Ω q S (from b + suc (next m (from b)))))) ≡⟨ cong (λ k → not (not (aend Ω k))) (ω-run-eq Ω Ω' q S (from b + suc (next m (from b))) refl) ⟩ | 93 not (not (aend Ω (ω-run Ω q S (from b + suc (next m (from b)))))) ≡⟨ cong (λ k → not (not (aend Ω k))) (ω-run-eq Ω Ω' q S (from b + suc (next m (from b))) refl) ⟩ |
89 not (not (aend Ω (ω-run Ω' q S (from b + suc (next m (from b)))))) ≡⟨⟩ | 94 not (not (aend Ω (ω-run Ω' q S (from b + suc (next m (from b)))))) ≡⟨⟩ |
90 not (aend Ω' (ω-run Ω' q S (from b + (suc (next m (from b)))))) ≡⟨ cong (λ k → not k ) bm03 ⟩ | 95 not (aend Ω' (ω-run Ω' q S (from b + (suc (next m (from b)))))) ≡⟨ cong (λ k → not k ) bm03 ⟩ |
91 false ∎ where open ≡-Reasoning | 96 false ∎ where open ≡-Reasoning |
92 | 97 |
98 -- | |
99 -- [] <> p → ¬ <> [] ¬ p | |
100 -- | |
93 | 101 |
94 M→B : { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) → Q → Muller Ω S → ¬ ( Buchi record { δ = δ Ω ; aend = λ q → not (aend Ω q)} S ) | 102 M→B : { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) → Q → Muller Ω S → ¬ ( Buchi record { δ = δ Ω ; aend = λ q → not (aend Ω q)} S ) |
95 M→B {Q} {Σ} Ω S q m b = ¬-bool bm04 bm02 where | 103 M→B {Q} {Σ} Ω S q m b = ¬-bool bm04 bm02 where |
96 q1 : Q | 104 q1 : Q |
97 q1 = ω-run Ω q S (from b + suc (next m (from b))) | 105 q1 = ω-run Ω q S (from b + suc (next m (from b))) |