Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/omega-automaton.agda @ 330:407684f806e4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 16 Nov 2022 17:43:10 +0900 |
parents | ba0ae5de62d1 |
children | ce4e44cee2d3 |
line wrap: on
line source
module omega-automaton where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.List open import Data.Maybe -- open import Data.Bool using ( Bool ; true ; false ; _∧_ ) renaming ( not to negate ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary -- using (not_; Dec; yes; no) open import Data.Empty open import logic open import automaton open Automaton ω-run : { Q Σ : Set } → (Ω : Automaton Q Σ ) → Q → ( ℕ → Σ ) → ( ℕ → Q ) ω-run Ω x s zero = x ω-run Ω x s (suc n) = δ Ω (ω-run Ω x s n) ( s n ) -- -- accept as Buchi automaton -- record Buchi { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) : Set where field from : ℕ stay : (x : Q) → (n : ℕ ) → n > from → aend Ω ( ω-run Ω x S n ) ≡ true open Buchi -- after sometimes, always p -- -- not p -- ------------> -- <> [] p * <> [] p -- <----------- -- p -- -- accept as Muller automaton -- record Muller { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) : Set where field next : (n : ℕ ) → ℕ infinite : (x : Q) → (n : ℕ ) → aend Ω ( ω-run Ω x S (n + (suc (next n)))) ≡ true open Muller -- always sometimes p -- -- not p -- ------------> -- [] <> p * [] <> p -- <----------- -- p open import nat open import Data.Nat.Properties -- LEMB : { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) → Q → Buchi Ω S ∨ (¬ ( Buchi Ω S )) -- LEMB Ω S Q = {!!} -- S need not to be constructive, so we have no constructive LEM -- LEMM : { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) → Q → Muller Ω S ∨ (¬ ( Muller Ω S )) -- LEMM = {!!} ω-run-eq : { Q Σ : Set } → (Ω Ω' : Automaton Q Σ ) → (q : Q) → ( S : ℕ → Σ ) → (x : ℕ) → δ Ω ≡ δ Ω' → ω-run Ω q S x ≡ ω-run Ω' q S x ω-run-eq Ω Ω' q s zero refl = refl ω-run-eq Ω Ω' q s (suc n) eq = begin ω-run Ω q s (suc n) ≡⟨⟩ δ Ω (ω-run Ω q s n) (s n) ≡⟨ cong₂ (λ j k → j k (s n) ) eq (ω-run-eq Ω Ω' q s n eq) ⟩ δ Ω' (ω-run Ω' q s n) (s n) ≡⟨⟩ ω-run Ω' q s (suc n) ∎ where open ≡-Reasoning -- -- <> [] p → ¬ [] <> ¬ p -- B→M : { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) → Q → Buchi Ω S → ¬ ( Muller record { δ = δ Ω ; aend = λ q → not (aend Ω q)} S ) B→M {Q} {Σ} Ω S q b m = ¬-bool bm04 bm02 where q1 : Q q1 = ω-run Ω q S (from b + suc (next m (from b))) bm02 : aend Ω q1 ≡ true bm02 = stay b q (from b + suc (next m (from b) )) x≤x+sy Ω' : Automaton Q Σ Ω' = record { δ = δ Ω ; aend = λ q → not (aend Ω q) } bm03 : aend Ω' (ω-run Ω' q S (from b + (suc (next m (from b))))) ≡ true bm03 = infinite m q (from b) bm04 : aend Ω q1 ≡ false bm04 = begin aend Ω (ω-run Ω q S (from b + suc (next m (from b)))) ≡⟨ sym not-not-bool ⟩ not (not (aend Ω (ω-run Ω q S (from b + suc (next m (from b)))))) ≡⟨ cong (λ k → not (not (aend Ω k))) (ω-run-eq Ω Ω' q S (from b + suc (next m (from b))) refl) ⟩ not (not (aend Ω (ω-run Ω' q S (from b + suc (next m (from b)))))) ≡⟨⟩ not (aend Ω' (ω-run Ω' q S (from b + (suc (next m (from b)))))) ≡⟨ cong (λ k → not k ) bm03 ⟩ false ∎ where open ≡-Reasoning -- -- [] <> p → ¬ <> [] ¬ p -- M→B : { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) → Q → Muller Ω S → ¬ ( Buchi record { δ = δ Ω ; aend = λ q → not (aend Ω q)} S ) M→B {Q} {Σ} Ω S q m b = ¬-bool bm04 bm02 where q1 : Q q1 = ω-run Ω q S (from b + suc (next m (from b))) bm02 : aend Ω q1 ≡ true bm02 = infinite m q (from b) Ω' : Automaton Q Σ Ω' = record { δ = δ Ω ; aend = λ q → not (aend Ω q) } bm03 : aend Ω' (ω-run Ω' q S (from b + (suc (next m (from b))))) ≡ true bm03 = stay b q (from b + suc (next m (from b) )) x≤x+sy bm04 : aend Ω q1 ≡ false bm04 = begin aend Ω (ω-run Ω q S (from b + suc (next m (from b)))) ≡⟨ sym not-not-bool ⟩ not (not (aend Ω (ω-run Ω q S (from b + suc (next m (from b)))))) ≡⟨ cong (λ k → not (not (aend Ω k))) (ω-run-eq Ω Ω' q S (from b + suc (next m (from b))) refl) ⟩ not (not (aend Ω (ω-run Ω' q S (from b + suc (next m (from b)))))) ≡⟨⟩ not (aend Ω' (ω-run Ω' q S (from b + (suc (next m (from b)))))) ≡⟨ cong (λ k → not k ) bm03 ⟩ false ∎ where open ≡-Reasoning data States3 : Set where ts* : States3 ts : States3 transition3 : States3 → Bool → States3 transition3 ts* true = ts* transition3 ts* false = ts transition3 ts true = ts* transition3 ts false = ts mark1 : States3 → Bool mark1 ts* = true mark1 ts = false ωa1 : Automaton States3 Bool ωa1 = record { δ = transition3 ; aend = mark1 } true-seq : ℕ → Bool true-seq _ = true false-seq : ℕ → Bool false-seq _ = false flip-seq : ℕ → Bool flip-seq zero = false flip-seq (suc n) = not ( flip-seq n ) -- flip-seq is acceepted by Muller automaton ωa1 lemma1 : Buchi ωa1 true-seq lemma1 = record { from = zero ; stay = {!!} } where lem1 : ( n : ℕ ) → n > zero → aend ωa1 (ω-run ωa1 {!!} true-seq n ) ≡ true lem1 zero () lem1 (suc n) (s≤s z≤n) with ω-run ωa1 {!!} true-seq n lem1 (suc n) (s≤s z≤n) | ts* = {!!} lem1 (suc n) (s≤s z≤n) | ts = {!!} lemma0 : Muller ωa1 flip-seq lemma0 = {!!} ωa2 : Automaton States3 Bool ωa2 = record { δ = transition3 ; aend = λ x → not ( mark1 x ) } flip-dec : (n : ℕ ) → Dec ( flip-seq n ≡ true ) flip-dec n with flip-seq n flip-dec n | false = no λ () flip-dec n | true = yes refl flip-dec1 : (n : ℕ ) → flip-seq (suc n) ≡ ( not ( flip-seq n ) ) flip-dec1 n = let open ≡-Reasoning in flip-seq (suc n ) ≡⟨⟩ ( not ( flip-seq n ) ) ∎ flip-dec2 : (n : ℕ ) → not flip-seq (suc n) ≡ flip-seq n flip-dec2 n = {!!} record flipProperty : Set where field flipP : (n : ℕ) → ω-run ωa2 {!!} {!!} ≡ ω-run ωa2 {!!} {!!} lemma2 : Muller ωa2 flip-seq lemma2 = record { next = next1 ; infinite = {!!} } where next1 : ℕ → ℕ next1 = {!!} infinite' : (n m : ℕ) → n ≥″ m → aend ωa2 {!!} ≡ true → aend ωa2 {!!} ≡ true infinite' = {!!} infinite2 : (n : ℕ) → aend ωa2 {!!} ≡ true infinite2 = {!!} lemma3 : Buchi ωa1 false-seq → ⊥ lemma3 = {!!} lemma4 : Muller ωa1 flip-seq → ⊥ lemma4 = {!!}