Mercurial > hg > Members > kono > Proof > automaton
diff agda/automaton-text.agda @ 67:b9679ebd1156
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 31 Oct 2019 13:53:26 +0900 |
parents | agda/regular-language.agda@293a2075514b |
children | 13822f5f9c85 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/agda/automaton-text.agda Thu Oct 31 13:53:26 2019 +0900 @@ -0,0 +1,97 @@ +module automaton-text where + +-- open import Level renaming ( suc to succ ; zero to Zero ) +open import Data.Nat +open import Data.List +open import Data.Maybe +-- open import Data.Bool using ( Bool ; true ; false ; _∧_ ) +open import Relation.Binary.PropositionalEquality hiding ( [_] ) +open import Relation.Nullary using (¬_; Dec; yes; no) +open import logic +-- open import Data.Bool renaming ( _∧_ to _and_ ; _∨_ to _or ) + +open import automaton + +open Automaton + + +lemma4 : {i n : ℕ } → i < n → i < suc n +lemma4 {0} {0} () +lemma4 {0} {suc n} lt = s≤s z≤n +lemma4 {suc i} {0} () +lemma4 {suc i} {suc n} (s≤s lt) = s≤s (lemma4 lt) + +lemma5 : {n : ℕ } → n < suc n +lemma5 {zero} = s≤s z≤n +lemma5 {suc n} = s≤s lemma5 + +record accept-n { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (astart : Q ) (n : ℕ ) (s : {i : ℕ } → (i < n) → Σ ) : Set where + field + r : (i : ℕ ) → i < suc n → Q + accept-1 : r 0 (s≤s z≤n) ≡ astart + accept-2 : (i : ℕ ) → (i<n : i < n ) → δ M (r i (lemma4 i<n)) (s i<n) ≡ r (suc i) (s≤s i<n) + accept-3 : aend M (r n lemma5 ) ≡ true + +get : { Σ : Set } → (x : List Σ ) → { i : ℕ } → i < length x → Σ +get [] () +get (h ∷ t) {0} (s≤s lt) = h +get (h ∷ t) {suc i} (s≤s lt) = get t lt + +lemma7 : { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (q : Q ) → (h : Σ) → (t : List Σ ) → accept M q (h ∷ t) ≡ true → accept M (δ M q h) t ≡ true +lemma7 M q h t eq with accept M (δ M q h) t +lemma7 M q h t refl | true = refl +lemma7 M q h t () | false + +open accept-n + +lemma→ : { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (q : Q ) → (x : List Σ ) → accept M q x ≡ true → accept-n M q (length x) (get x ) +lemma→ {Q} {Σ} M q [] eq = record { r = λ i lt → get [ q ] {i} lt ; accept-1 = refl ; accept-2 = λ _ () ; accept-3 = eq } +lemma→ {Q} {Σ} M q (h ∷ t) eq with lemma→ M (δ M q h) t (lemma7 M q h t eq) +... | an = record { r = seq ; accept-1 = refl ; accept-2 = acc2 ; accept-3 = accept-3 an } where + seq : (i : ℕ) → i < suc (suc (foldr (λ _ → suc) 0 t)) → Q + seq 0 lt = q + seq (suc i) (s≤s lt) = r an i lt + acc2 : (i : ℕ) (i<n : i < suc (foldr (λ _ → suc) 0 t)) → δ M (seq i (lemma4 i<n)) (get (h ∷ t) i<n) ≡ seq (suc i) (s≤s i<n) + acc2 zero (s≤s z≤n) = begin + δ M (seq zero (lemma4 (s≤s z≤n))) (get (h ∷ t) (s≤s z≤n)) + ≡⟨⟩ + δ M q h + ≡⟨ sym ( accept-1 an) ⟩ + seq 1 (s≤s (s≤s z≤n)) + ∎ where open ≡-Reasoning + acc2 (suc i) (s≤s lt) = accept-2 an i lt + +an-1 : { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (q : Q ) → (h : Σ ) → (t : List Σ ) + → accept-n M q (length (h ∷ t)) (get (h ∷ t) ) + → accept-n M (δ M q h) (length t) (get t ) +an-1 {Q} {Σ} M q h t an = record { + r = seq + ; accept-1 = acc1 + ; accept-2 = acc2 + ; accept-3 = accept-3 an + } where + seq : (i : ℕ) → i < suc (length t) → Q + seq i lt = r an (suc i) ( s≤s lt) + acc1 : seq 0 (s≤s z≤n) ≡ δ M q h + acc1 = begin + seq 0 (s≤s z≤n) + ≡⟨⟩ + r an 1 (s≤s (s≤s z≤n)) + ≡⟨ sym (accept-2 an 0 (s≤s z≤n)) ⟩ + δ M (r an 0 (s≤s z≤n)) h + ≡⟨ cong (λ k → δ M k h) (accept-1 an) ⟩ + δ M q h + ∎ where open ≡-Reasoning + acc2 : (i : ℕ) (i<n : i < length t) → δ M (seq i (lemma4 i<n)) (get t i<n) ≡ seq (suc i) (s≤s i<n) + acc2 i lt = accept-2 an (suc i) (s≤s lt) + +lemma← : { Q : Set } { Σ : Set } (M : Automaton Q Σ ) (q : Q ) → (x : List Σ ) → accept-n M q (length x) (get x ) → accept M q x ≡ true +lemma← {Q} {Σ} M q [] an with accept-1 an | accept-3 an +... | eq1 | eq3 = begin + aend M q + ≡⟨ cong ( λ k → aend M k ) (sym (accept-1 an)) ⟩ + aend M (r an 0 lemma5) + ≡⟨ accept-3 an ⟩ + true + ∎ where open ≡-Reasoning +lemma← {Q} {Σ} M q (h ∷ t) an = lemma← M (δ M q h) t ( an-1 M q h t an )