view agda/regex1.agda @ 45:e9edc777dc03

fix derive
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 22 Dec 2018 15:48:05 +0900
parents aa15eff1aeb3
children 7a0634a7c25a
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
module regex1 where

open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Fin
open import Data.Nat hiding ( _≟_ )
open import Data.List hiding ( any ;  [_] )
import Data.Bool using ( Bool ; true ; false ; _∧_ )
open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ )
open import  Relation.Binary.PropositionalEquality as RBF hiding ( [_] ) 
open import Relation.Nullary using (¬_; Dec; yes; no)


data Regex   ( Σ : Set  ) : Set  where
   _*    : Regex  Σ → Regex  Σ
   _&_   : Regex  Σ → Regex  Σ → Regex Σ
   _||_  : Regex  Σ → Regex  Σ → Regex Σ
   <_>   : Σ → Regex  Σ

-- postulate a b c d : Set

data hoge : Set where
   a : hoge
   b : hoge
   c : hoge
   d : hoge

infixr 40 _&_ _||_

r1' =    (< a > & < b >) & < c >
r1 =    < a > & < b > & < c >
any = < a > || < b >  || < c >
r2 =    ( any * ) & ( < a > & < b > & < c > )
r3 =    ( any * ) & ( < a > & < b > & < c > & < a > & < b > & < c > )
r4 =    ( < a > & < b > & < c > ) || ( < b > & < c > & < d > )
r5 =    ( any * ) & ( < a > & < b > & < c > || < b > & < c > & < d > )

open import nfa

split : {Σ : Set} → (List Σ → Bool)
      → ( List Σ → Bool) → List Σ → Bool
split x y  [] = x [] ∧ y []
split x y (h  ∷ t) = (x [] ∧ y (h  ∷ t)) ∨
  split (λ t1 → x (  h ∷ t1 ))  (λ t2 → y t2 ) t

{-# TERMINATING #-}
repeat : {Σ : Set} → (List Σ → Bool) → List Σ → Bool
repeat x [] = true
repeat {Σ} x ( h  ∷ t ) = split x (repeat {Σ} x) ( h  ∷ t )

open import finiteSet
open FiniteSet

cmpi :  {Σ : Set} → {n : ℕ } (fin : FiniteSet Σ {n}) → (x y : Σ ) → Dec (F←Q fin x ≡  F←Q fin y) 
cmpi fin x y = F←Q fin x ≟  F←Q fin y 

regular-language : {Σ : Set} → Regex Σ → {n : ℕ } (fin : FiniteSet Σ {n}) →  List Σ → Bool
regular-language (x *) f = repeat ( regular-language x f )
regular-language (x & y) f = split ( regular-language x f ) ( regular-language y f )
regular-language (x || y) f = λ s → ( regular-language x f s )  ∨  ( regular-language y f s)
regular-language < h > f [] = false
regular-language < h > f (h1  ∷ [] ) with cmpi f h h1
... | yes _ = true
... | no _  = false
regular-language < h > f _ = false