Mercurial > hg > Members > kono > Proof > automaton
changeset 374:1feaa053e8d7
.. another one
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Jul 2023 04:14:52 +0900 |
parents | d2bc08d03e99 |
children | b3af75843235 |
files | automaton-in-agda/src/derive.agda |
diffstat | 1 files changed, 93 insertions(+), 137 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/derive.agda Sun Jul 23 11:05:31 2023 +0900 +++ b/automaton-in-agda/src/derive.agda Mon Jul 24 04:14:52 2023 +0900 @@ -88,6 +88,68 @@ open import Relation.Binary.Definitions +open _∧_ + +fb20 : {r s r₁ s₁ : Regex Σ} → r & r₁ ≡ s & s₁ → (r ≡ s ) ∧ (r₁ ≡ s₁ ) +fb20 refl = ⟪ refl , refl ⟫ + +fb21 : {r s r₁ s₁ : Regex Σ} → r || r₁ ≡ s || s₁ → (r ≡ s ) ∧ (r₁ ≡ s₁ ) +fb21 refl = ⟪ refl , refl ⟫ + +rg-eq? : (r s : Regex Σ) → Dec ( r ≡ s ) +rg-eq? ε ε = yes refl +rg-eq? ε φ = no (λ ()) +rg-eq? ε (s *) = no (λ ()) +rg-eq? ε (s & s₁) = no (λ ()) +rg-eq? ε (s || s₁) = no (λ ()) +rg-eq? ε < x > = no (λ ()) +rg-eq? φ ε = no (λ ()) +rg-eq? φ φ = yes refl +rg-eq? φ (s *) = no (λ ()) +rg-eq? φ (s & s₁) = no (λ ()) +rg-eq? φ (s || s₁) = no (λ ()) +rg-eq? φ < x > = no (λ ()) +rg-eq? (r *) ε = no (λ ()) +rg-eq? (r *) φ = no (λ ()) +rg-eq? (r *) (s *) with rg-eq? r s +... | yes eq = yes ( cong (_*) eq) +... | no ne = no (λ eq → ne (fb10 eq) ) where + fb10 : {r s : Regex Σ} → (r *) ≡ (s *) → r ≡ s + fb10 refl = refl +rg-eq? (r *) (s & s₁) = no (λ ()) +rg-eq? (r *) (s || s₁) = no (λ ()) +rg-eq? (r *) < x > = no (λ ()) +rg-eq? (r & r₁) ε = no (λ ()) +rg-eq? (r & r₁) φ = no (λ ()) +rg-eq? (r & r₁) (s *) = no (λ ()) +rg-eq? (r & r₁) (s & s₁) with rg-eq? r s | rg-eq? r₁ s₁ +... | yes y | yes y₁ = yes ( cong₂ _&_ y y₁) +... | yes y | no n = no (λ eq → n (proj2 (fb20 eq) )) +... | no n | yes y = no (λ eq → n (proj1 (fb20 eq) )) +... | no n | no n₁ = no (λ eq → n (proj1 (fb20 eq) )) +rg-eq? (r & r₁) (s || s₁) = no (λ ()) +rg-eq? (r & r₁) < x > = no (λ ()) +rg-eq? (r || r₁) ε = no (λ ()) +rg-eq? (r || r₁) φ = no (λ ()) +rg-eq? (r || r₁) (s *) = no (λ ()) +rg-eq? (r || r₁) (s & s₁) = no (λ ()) +rg-eq? (r || r₁) (s || s₁) with rg-eq? r s | rg-eq? r₁ s₁ +... | yes y | yes y₁ = yes ( cong₂ _||_ y y₁) +... | yes y | no n = no (λ eq → n (proj2 (fb21 eq) )) +... | no n | yes y = no (λ eq → n (proj1 (fb21 eq) )) +... | no n | no n₁ = no (λ eq → n (proj1 (fb21 eq) )) +rg-eq? (r || r₁) < x > = no (λ ()) +rg-eq? < x > ε = no (λ ()) +rg-eq? < x > φ = no (λ ()) +rg-eq? < x > (s *) = no (λ ()) +rg-eq? < x > (s & s₁) = no (λ ()) +rg-eq? < x > (s || s₁) = no (λ ()) +rg-eq? < x > < x₁ > with eq? x x₁ +... | yes y = yes (cong <_> y) +... | no n = no (λ eq → n (fb11 eq)) where + fb11 : < x > ≡ < x₁ > → x ≡ x₁ + fb11 refl = refl + rank : (r : Regex Σ) → ℕ rank ε = 0 rank φ = 0 @@ -96,151 +158,45 @@ rank (r || r₁) = max (rank r) (rank r₁) rank < x > = 0 -data SB : (r : Regex Σ) → (rn : ℕ) → Set where - sbε : SB ε 0 - sbφ : SB φ 0 - sb<> : (s : Σ) → SB < s > 0 - sb|1 : (x y : Regex Σ) → (xn : ℕ) → SB x xn → SB (x || y) (max (rank x) (rank y)) - sb|2 : (x y : Regex Σ) → (yn : ℕ) → SB y yn → SB (x || y) (max (rank x) (rank y)) - sb* : (x : Regex Σ) → (xn : ℕ) → SB x xn → SB (x *) (suc xn) - sb& : (x y : Regex Σ) → (xn yn : ℕ) → xn < yn → ( sx : SB x xn ) (sy : SB y yn ) → SB (x & y) (suc yn) +data SB : (r s : Regex Σ) → Set where + sunit : {r : Regex Σ} → SB r r + sub|1 : {x y z : Regex Σ} → SB x z → SB (x || y) z + sub|2 : {x y z : Regex Σ} → SB y z → SB (x || y) z + sub* : {x y : Regex Σ} → SB x y → SB (x *) y + sub&1 : (x y z : Regex Σ) → SB x z → SB (x & y) z + sub&2 : (x y z : Regex Σ) → SB y z → SB (x & y) z + sub&< : (x y : Regex Σ) → rank x < rank y → SB x y → SB y (x & y) + +record ISB (r : Regex Σ) : Set where + field + s : Regex Σ + is-sub : SB r s open import bijection using ( InjectiveF ; Is ) -rank-eq : {r : Regex Σ} → {i : ℕ} → (a : SB r i) → i ≡ rank r -rank-eq sbε = refl -rank-eq sbφ = refl -rank-eq (sb<> s) = refl -rank-eq (sb|1 x y xn sb) = refl -rank-eq (sb|2 x y yn sb) = refl -rank-eq (sb* x xn sb) = cong suc ( rank-eq sb ) -rank-eq (sb& x y xn yn x₁ sb sb₁) = cong suc (trans (rank-eq sb₁) (sym ( x≤y→max=y _ _ ( - begin - rank x ≡⟨ sym ( rank-eq sb) ⟩ - xn <⟨ x₁ ⟩ - yn ≡⟨ rank-eq sb₁ ⟩ - rank y ∎ ) ))) where open ≤-Reasoning - -regex∨ : {r r₁ : Regex Σ} → Bijection (SB r (rank r) ∨ SB r₁ (rank r₁)) (SB (r || r₁) (max (rank r) (rank r₁))) -regex∨ {r} {r₁} = record { fun← = f1 ; fun→ = f2 ; fiso← = ? ; fiso→ = ? } where - f1 : SB (r || r₁) (max (rank r) (rank r₁)) → SB r (rank r) ∨ SB r₁ (rank r₁) - f1 (sb|1 .r .r₁ xn x) = case1 ( subst (λ k → SB r k ) (rank-eq x) x) - f1 (sb|2 .r .r₁ yn x) = case2 ( subst (λ k → SB r₁ k ) (rank-eq x) x) - f2 : SB r (rank r) ∨ SB r₁ (rank r₁) → SB (r || r₁) (max (rank r) (rank r₁)) - f2 (case1 sb) = sb|1 r r₁ (rank r ) sb - f2 (case2 sb) = sb|2 r r₁ (rank r₁) sb - -finSBTA : (r : Regex Σ) → FiniteSet (SB r (rank r) → Bool) -finSBTA r = fin→ ( fb00 (rank r) r ≤-refl ) where - fb00 : (n : ℕ ) → (r : Regex Σ) → rank r ≤ n → FiniteSet (SB r (rank r)) - fb00 n ε le = record { finite = 1 ; Q←F = λ _ → sbε ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where - fb01 : (q : SB ε 0) → sbε ≡ q - fb01 sbε = refl - fb00 zero φ le = record { finite = 1 ; Q←F = λ _ → sbφ ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where - fb01 : (q : SB φ 0) → sbφ ≡ q - fb01 sbφ = refl - fb00 zero (r || r₁) le = iso-fin (fin-∨ (fb00 zero r (≤-trans (x≤max _ _) le)) (fb00 zero r₁ (≤-trans (y≤max _ _) le))) regex∨ - fb00 zero < x > le = record { finite = 1 ; Q←F = λ _ → sb<> x ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where - fb01 : (q : SB < x > 0) → sb<> x ≡ q - fb01 (sb<> x) = refl - fb00 (suc n) (r *) le = iso-fin (fb00 n r ?) ? - fb00 (suc n) (r & r₁) le = iso-fin (fin-∧ (fb00 n r ?) (fb00 n r₁ ?)) ? - fb00 (suc n) (r || r₁) le = iso-fin (fin-∨ (fb00 (suc n) r ?) (fb00 (suc n) r₁ ?)) regex∨ - fb00 zero (x *) () - fb00 zero (x & x₁) () - fb00 (suc n) φ z≤n = fb00 n φ z≤n - fb00 (suc n) < x > z≤n = fb00 n < x > z≤n - -fb20 : {r s r₁ s₁ : Regex Σ} → r & r₁ ≡ s & s₁ → (r ≡ s ) ∧ (r₁ ≡ s₁ ) -fb20 refl = ⟪ refl , refl ⟫ - -fb21 : {r s r₁ s₁ : Regex Σ} → r || r₁ ≡ s || s₁ → (r ≡ s ) ∧ (r₁ ≡ s₁ ) -fb21 refl = ⟪ refl , refl ⟫ - -open _∧_ - -dec-regex : (r s : Regex Σ) → Dec ( r ≡ s ) -dec-regex ε ε = yes refl -dec-regex ε φ = no (λ ()) -dec-regex ε (s *) = no (λ ()) -dec-regex ε (s & s₁) = no (λ ()) -dec-regex ε (s || s₁) = no (λ ()) -dec-regex ε < x > = no (λ ()) -dec-regex φ ε = no (λ ()) -dec-regex φ φ = yes refl -dec-regex φ (s *) = no (λ ()) -dec-regex φ (s & s₁) = no (λ ()) -dec-regex φ (s || s₁) = no (λ ()) -dec-regex φ < x > = no (λ ()) -dec-regex (r *) ε = no (λ ()) -dec-regex (r *) φ = no (λ ()) -dec-regex (r *) (s *) with dec-regex r s -... | yes eq = yes ( cong (_*) eq) -... | no ne = no (λ eq → ne (fb10 eq) ) where - fb10 : {r s : Regex Σ} → (r *) ≡ (s *) → r ≡ s - fb10 refl = refl -dec-regex (r *) (s & s₁) = no (λ ()) -dec-regex (r *) (s || s₁) = no (λ ()) -dec-regex (r *) < x > = no (λ ()) -dec-regex (r & r₁) ε = no (λ ()) -dec-regex (r & r₁) φ = no (λ ()) -dec-regex (r & r₁) (s *) = no (λ ()) -dec-regex (r & r₁) (s & s₁) with dec-regex r s | dec-regex r₁ s₁ -... | yes y | yes y₁ = yes ( cong₂ _&_ y y₁) -... | yes y | no n = no (λ eq → n (proj2 (fb20 eq) )) -... | no n | yes y = no (λ eq → n (proj1 (fb20 eq) )) -... | no n | no n₁ = no (λ eq → n (proj1 (fb20 eq) )) -dec-regex (r & r₁) (s || s₁) = no (λ ()) -dec-regex (r & r₁) < x > = no (λ ()) -dec-regex (r || r₁) ε = no (λ ()) -dec-regex (r || r₁) φ = no (λ ()) -dec-regex (r || r₁) (s *) = no (λ ()) -dec-regex (r || r₁) (s & s₁) = no (λ ()) -dec-regex (r || r₁) (s || s₁) with dec-regex r s | dec-regex r₁ s₁ -... | yes y | yes y₁ = yes ( cong₂ _||_ y y₁) -... | yes y | no n = no (λ eq → n (proj2 (fb21 eq) )) -... | no n | yes y = no (λ eq → n (proj1 (fb21 eq) )) -... | no n | no n₁ = no (λ eq → n (proj1 (fb21 eq) )) -dec-regex (r || r₁) < x > = no (λ ()) -dec-regex < x > ε = no (λ ()) -dec-regex < x > φ = no (λ ()) -dec-regex < x > (s *) = no (λ ()) -dec-regex < x > (s & s₁) = no (λ ()) -dec-regex < x > (s || s₁) = no (λ ()) -dec-regex < x > < x₁ > with eq? x x₁ -... | yes y = yes (cong <_> y) -... | no n = no (λ eq → n (fb11 eq)) where - fb11 : < x > ≡ < x₁ > → x ≡ x₁ - fb11 refl = refl +finSB : (r : Regex Σ) → FiniteSet (ISB r) +finSB = ? -toSB : (r : Regex Σ) → SB r (rank r) → Bool -toSB ε sbε = true -toSB φ sbφ = true -toSB (r *) (sb* .r .(rank r) x) = toSB r x -toSB (r & r₁) (sb& .r .r₁ xn .(max (rank r) (rank r₁)) x<m x₁ x₂) = toSB r ? /\ toSB r₁ ? -toSB (r || r₁) x = toSB r ? \/ toSB r₁ ? -toSB < x₁ > (sb<> .x₁) = true +toSB : (r : Regex Σ) → ISB r → Bool +toSB r isb with rg-eq? r (ISB.s isb) +... | yes _ = true +... | no _ = false + +sbempty? : (r : Regex Σ) → (ISB r → Bool) → Bool +sbempty? r = ? -sbempty? : (r : Regex Σ) → SB r (rank r) → Bool -sbempty? .ε sbε = true -sbempty? .φ sbφ = false -sbempty? .(< s >) (sb<> s) = false -sbempty? .(x *) (sb* x .(rank x) sb) = true -sbempty? .(x & y) (sb& x y xn .(max (rank x) (rank y)) x₁ sb sb₁) = sbempty? ? ? /\ sbempty? ? ? -sbempty? .(x || y) (sb|1 x y xn sb) = ? -sbempty? .(x || y) (sb|2 x y yn sb) = ? +sbderive : (r : Regex Σ) → (ISB r → Bool) → Σ → ISB r → Bool +sbderive = ? + +-- finDerive : (r : Regex Σ) → FiniteSet (Derived r) +-- this is not correct because it contains s || s || s || ..... -sbderive : (r : Regex Σ) → (SB r (rank r) → Bool) → Σ → SB r (rank r) → Bool -sbderive ε f s sbε = f sbε -sbderive φ f s sbφ = false -sbderive (r *) f s (sb* .r .(rank r) sb) = ? -sbderive (r & r₁) f s sb = ? -sbderive (r || r₁) f s sb = ? -sbderive < x > f s sb = ? +finSBTA : (r : Regex Σ) → FiniteSet (ISB r → Bool) +finSBTA r = fin→ ( finSB r ) -regex→automaton1 : (r : Regex Σ) → Automaton (SB r (rank r) → Bool) Σ -regex→automaton1 r = record { δ = sbderive r ; aend = λ d → ? } +regex→automaton1 : (r : Regex Σ) → Automaton (ISB r → Bool) Σ +regex→automaton1 r = record { δ = sbderive r ; aend = sbempty? r } regex-match1 : (r : Regex Σ) → (List Σ) → Bool regex-match1 r is = accept ( regex→automaton1 r ) (λ sb → toSB r sb) is